Log in

Substrate specificity of the intestinal brush-border proline/sodium (IMINO) transporter

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

l-proline uptake via the intestinal brush-borderIMINO carrier was tested for inhibition by 41 compounds which included sugars, N-methylated, α-,β-, γ- and ε-amino and imino acids, and heterocyclic analogs of pyrrolidine, piperidine and pyridine. Based on competitive inhibitor constants (apparentK/'s) we find that theIMINO carrier binding site interacts with molecules which possess a well-defined set of structural prerequisites. The ideal inhibitor must 1) be a heterocyclic nitrogen ring, 2) have a hydrophobic region, 3) be thel-stereoisomer of 4) an electronegative carbonyl group which is 5) separated by a one-carbon atom spacer from 6) an electropositive tetrahedral imino nitrogen with two H atoms. Finally, 7) the inhibitor conformation determined by dynamic ring puckering must position all these features within a critical domain. The two best inhibitors arel-pipecolate (apparentK/0.2mm) andl-proline (apparentK/0.3mm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abillon, E. 1982. Geometry of the five-membered ring. Mathematical demonstration of the pseudorotation formulae.Biophys. Struct. Mech. 8:257–270

    Google Scholar 

  • Allen, F.H., Kennard, O., Taylor, R. 1983. Systematic analysis of structural data as a research technique in organic chemistry.Acc. Chem. Res. 16:146–153

    Google Scholar 

  • Burrill, P., Lerner, J. 1972. A distinct component of proline transport in chicken small intestine.Comp. Biochem. Physiol. 42A:437–443

    Google Scholar 

  • Christensen, H.N. 1975. Biological Transport, W. A. Benjamin, Reading, Mass.

    Google Scholar 

  • Dunitz, J.D. 1972. Approximate relationships between conformational parameters in the 5- and 6-membered rings.Tetrahedren 28:5459–5467

    Google Scholar 

  • Ganapathy, V., Roesel R.A., Howard J.C., Leibach, F.H. 1983. Interaction of proline, 5-oxoproline, and pipecolic acid for renal transport in the rabbit.J. Biol. Chem. 258:2266–2272

    Google Scholar 

  • Govil, G., Hosu, R.V. 1982. Conformation of Biological Molecules, Springer, Berlin

    Google Scholar 

  • Hayashi, K., Yamamoto, S., Ohe, K., Miyoshi, A., Kawasaki, T. 1980. Na+-gradient-dependent transport ofl-proline and analysis of its carrier system in brush-border membrane vesicles of the guinea-pig ileum.Biochim. Biophys. Acta 601:654–663

    Google Scholar 

  • Hendrickson, J.B. 1967. Molecular geometry. VII. Modes of interconversion in the medium rings.J. Am. Chem. Soc. 89:7047–7061

    Google Scholar 

  • Lerner, J. 1978. A review of amino acid transport processes in animal cells and tissues. University of Main Press, Orono, Maine

    Google Scholar 

  • London, R.E. 1978. On the interpretation of13C spin-lattice relaxation resulting from ring puckering in proline.J. Am. Chem. Soc. 100:2678–2685

    Google Scholar 

  • McNamara, P.D., Ozegovic, B., Pepe, L.M., Segal, S. 1976. Proline and glycine uptake by renal brushborder membrane vesicles.Proc. Natl. Acad. Sci. USA 73:4521–4525

    Google Scholar 

  • Mircheff, A.K., Kippen, I., Hirayama, B., Wright, E.M. 1982. Delineation of sodium-stimulated amino acid transport pathways in rabbit kidney brush border vesicles.J. Membrane. Biol. 64:113–122

    Google Scholar 

  • Mircheff, A.K., Wright, E.M. 1976. Analytical isolation of plasma membranes of intestinal epithelial cells: Identification of Na,K-ATPase rich membranes and the distribution of enzyme activities.J. Membrane Biol. 28:309–333

    Google Scholar 

  • Munck, B.G. 1984. Imino acid transport across the brush-border membrane of the guinea-pig small intestine.Biochim. Biophys. Acta 770:35–39

    Google Scholar 

  • Preston, R.L., Schaeffer, J.F., Curran, P.F. 1974. Structure-affinity relationships of substrates for the neutral amino acid transport system in rabbit ileum.J. Gen. Physiol. 64:443–467

    Google Scholar 

  • Ramachandran, G.N., Lakshminarayanan, A.V., Balasubramanian, R., Tegoni, G. 1970. Studies on the conformation of amino acids. XII. Energy calculations on prolyl residue.Biochim. Biophys. Acta 221:165–181

    Google Scholar 

  • Riddell, F.G. 1980. The conformational analysis of heterocyclic compounds. Academic, New York

    Google Scholar 

  • Ross, H., Wright, E.M. 1984. Neutral amino acid transport by plasma membrane vesicles of rabbit choroid plexus.Brain Res. 295:155–160

    Google Scholar 

  • Schell, R.E., Stevens, B.R., Wright, E.M. 1983. Kinetics of sodium-dependent solute transport by rabbit renal and jejunal brush border vesicles using a fluorescent dye.J. Physiol. (London) 335:307–318

    Google Scholar 

  • Silbernagl, 1980. Renal transport of amino acids and oligopeptides.In: Renal Transport of Organic Substances. R. Greger and S. Silbernagl, editors. pp. 93–117. Springer, Berlin

    Google Scholar 

  • Stevens, B.R., Kaunitz, J.D., Wright, E.M. 1984. Intestinal transport of amino acids and sugars: Advances using membrane vesicles.Annu. Rev. Physiol. 46:417–433

    Google Scholar 

  • Stevens, B.R., Ross, H.J., Wright, E.M. 1982a. Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles.J. Membrane Biol. 66:213–225

    Google Scholar 

  • Stevens, B.R., Wright, E.M. 1983. The effect of Na+ on proline transport kinetics in jejunal brush border membrane vesicles.Fed. Proc. 42:1287

    Google Scholar 

  • Stevens, B.R., Wright, E.M. 1984a. Substrate structural requirements for the intestinalImino transport carrier.Fed. Proc. 43:1086

    Google Scholar 

  • Stevens, B.R., Wright, E.M. 1985. Kinetic model of the brush border proline/sodium (imino) cotransporter.Ann. N.Y. Acad. Sci. (in press)

  • Stevens, B.R., Wright, S.H., Hirayama, B., Gunther, R.D., Ross, H., Harms, V., Nord, E., Kippen, I., Wright, E.M. 1982b. Organic and inorganic solute transport in renal and intestinal membrane vesicles preserved in liquid nitrogen.Membr. Biochem. 4:271–282

    Google Scholar 

  • Ullrich, K.J., Rumrigh, G., Kloss, S., Fasold, H. 1982. Absorption of monocarboxylic acids in the proximal tubule of the rat kidney. II. Specificity for aromatic compounds.Pfluegers Arch. 395:227–231

    Google Scholar 

  • Wright, E.M., Peerce, B. 1984. Identification and conformational changes of the intestinal proline carrier.J. Biol. Chem. 259:14993–14996

    Google Scholar 

  • Wright, E.M., Schell, R.E., Stevens, B.R. 1984. Specificity of intestinal brush border proline transport: Cyanine dye studies.Biochim. Biophys. Acta (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, B.R., Wright, E.M. Substrate specificity of the intestinal brush-border proline/sodium (IMINO) transporter. J. Membrain Biol. 87, 27–34 (1985). https://doi.org/10.1007/BF01870696

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870696

Key Words

Navigation