Log in

Chloride secretion by canine tracheal epithelium: IV. Basolateral membrane K permeability parallels secretion rate

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

We evaluated the K conductance properties of the basolateral membranes of the surface cells of canine tracheal epithelium using microelectrode techniques. Studies were conducted under basal conditions (indomethacin, 10−6 m, mucosal solution) and after stimulation of electrogenic Cl secretion with epinephrine (10−6 m, serosal solution). Elevated serosal solution [K] depolarized the electrical potential differences across the apical (ψa) and basolateral (ψb) membranes in both the presence and absence of epinephrine. Serosal barium (0.5mm) also depolarized ψa and ψb and selectively increased basolateral membrane resistance threefold. We also used K-selective microelectrodes to determine cell K activity (a K c ) and the driving force for K transport across the limiting membranes under basal and stimulated conditions. Stimulation of Cl secretion was not associated with significant changes in ψb ora K c so that the driving force for k exit from cell to serosal solution (ca. 20 mV) was not altered. There was close agreement between the basolateral membrane electromotive force (E b ) determined from prior studies (M.J. Welsh, P.L. Smith and R.A. Frizzell,J. Membrane Biol. 71:209–218, 1983) and the chemical potential difference for K across this barrier (E K b ) in the presence and absence of epinephrine. These findings support the notion that the basolateral membrane is characterized by a high conductance to K under both secreting and nonsecreting conditions and indicate that the decrease in basolateral membrane resistance that accompanies stimulation of Cl secretion results from an increase in its K conductance. This obviates changes ina K c , that would otherwise accompany increased Na/K pump activity and, by hyperpolarizing ψa establishes the electrical driving force for Cl secretion across the apical membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Bazzaz, F.J., Al-Awqati, Q. 1979. Interaction between sodium and chloride transport in canine tracheal mucosa.J. Appl. Physiol. 46:111–119

    Google Scholar 

  • Al-Bazzaz, F.J., Cheng, E. 1979. Effect of catecholamines on ion transport in dog tracheal epithelium.J. Appl. Physiol. 47:397–403

    Google Scholar 

  • Al-Bazzaz, F.J., Jayaram, T. 1981. Ion transort by canine tracheal mucosa: Effect of elevation of cellular calcium.Exp. Lung Res. 2:121–130

    Google Scholar 

  • Al-Bazzaz, F.J., Yadava, V.P., Westenfelder, C. 1981. Modification of Na and Cl transport in canine tracheal mucosa by prostaglandins.Am. J. Physiol. 240:F101-F105

    Google Scholar 

  • Boulpaep, E.J. 1971. Electrophysiological properties of the proximal tubule: Importance of cellular and intercellular pathways.In: Electrophysiology of Epithelia. G. Giebisch, editor. p. 91. K. Schattauer Verlag, Stuttgart

    Google Scholar 

  • Boulpaep, E.L., Sackin, H. 1980. Electrical analysis of intraepithelial barriers.Curr. Top. Membr. Trans. 13:169–197

    Google Scholar 

  • Caroni, P., Carafoli, E. 1982. Modulation by calcium of the potassium permeability of dog heart sarcolemmal vesicles.Proc. Natl. Acad. Sci. USA 79:5763–5767

    Google Scholar 

  • Cican, M.M. 1978. Intracellular activities of sodium and potassium.Am. J. Physiol. 234:F261-F264

    Google Scholar 

  • Cican, M.M. 1980. Potassium activities in epithelia.Fed. Proc. 39:2865–2870

    Google Scholar 

  • Cotton, C., Gatzy, J. 1982. Electrolytes and sodium uptake in disaggregated canine tracheal epithelial cells.Fed. Proc. 41:1260

    Google Scholar 

  • Davis, W.C., Finn, A.L. 1982. Sodium transport inhibition by amiloride reduces basolateral membrane potassium conductance in tight epithelia.Science 216:525–527

    Google Scholar 

  • DeLong, J., Civan, M.M. 1978. Dissociation of cellular K+ accumulation from net Na+ transport by toad urinary bladder.J. Membrane Biol. 42:19–43

    Google Scholar 

  • DeLong, J., Civan, M.M. 1980. Intracellular chemical activity of potassium in toad urinary bladder.Curr. Top. Membr. Transp. 13:93–105

    Google Scholar 

  • Frizzell, R.A., Field, M., Schultz, S.G. 1979. Sodium-coupled chloride transport by epithelial tissues.Am. J. Physiol. 236:F1-F8

    Google Scholar 

  • Fujimoto, M., Kazuyo, N., Kubota, T. 1980. Electrochemical profile for ion transport across the membrane of proximal tubule cells.Membr. Biochem. 3:67–97

    Google Scholar 

  • Fujimoto, M., Kubota, T. 1976. Physiochemical properties of a liquid ion exchanger microelectrode and its application to biological fluids.Jpn. J. Physiol. 26:631–650

    Google Scholar 

  • Gunter-Smith, P.J., Grasset, E., Schultz, S.G. 1982. Sodium-coupled amino acid and sugar transport byNecturus small intestine: An equivalent electrical circuit analysis of a rheogenic co-transport system.J. Membrane Biol. 66:25–39

    Google Scholar 

  • Helman, S.I., Fisher, R.S. 1977. Microelectrode studies of the active Na transport pathway of frog skin.J. Gen. Physiol. 69:571–604

    Google Scholar 

  • Helman, S.I., Nagel, W., Fisher, R.S. 1979. Ouabain on active transepithelial sodium transport in frog skin. Studies with microelectrodes.J. Gen. Physiol. 74:105–127

    Google Scholar 

  • Higgins, J.T., Gebler, B., Fromter, E. 1977. Electrical properties of amphibian urinary bladder. II. The cell potential profile inNecturus maculosa.Pfluegers Arch. 371:87–97

    Google Scholar 

  • Khuri, R.N., Agulian, S.K., Kalloghlian, A. 1972. Intracellular potassium in cells of the distal tubule.Pfluegers Arch. 335:297–308

    Google Scholar 

  • Kimura, G., Fujimoto, M. 1977. Estimation of the physical state of potassium in frog bladder cells by ion exchange microelectrode.Jpn. J. Physiol. 27:291–303

    Google Scholar 

  • Lee, C.O., Armstrong, W.McD. 1972. Activities of sodium and potassium ions in epithelial cells of small intestine.Science 175:1261–1264

    Google Scholar 

  • Lew, V.L., Ferreira, H.G. 1976. Variable Ca sensitivity of a K-selective channel in intact red-cell membranes.Nature (London) 263:336–338

    Google Scholar 

  • Lewis, S.A., Wills, N.K., Eaton, D.C. 1978. Basolateral membrane potential of a tight epithelium: Ionic diffusion and electrogenic pumps.J. Membrane Biol. 41:117–148

    Google Scholar 

  • Meech, R.W. 1978. Calcium-dependent potassium activation in nervous tissues.Annu. Rev. Biophys. Bioeng. 1:1–18

    Google Scholar 

  • Miller, S.S., Steinberg, R.H. 1977. Passive ionic properties of frog retinal pigment epithelium.J. Membrane Biol. 36:337–372

    Google Scholar 

  • Nagel, W. 1979. Inhibition of potassium conductance by barium in frog skin epithelium.Biochim. Biophys. Acta 552:346–357

    Google Scholar 

  • Olver, R.E., Davis, B., Marin, M.G., Nadel, J.A. 1975. Active transport of Na+ and Cl across the canine tracheal epithelium.Am. Rev. Respir. Dis. 112:811–815

    Google Scholar 

  • Palmer, L.G., Century, T.J., Civan, M.M. 1978. Activity coefficients of intracellular Na+ and K+ during development of frog oocytes.J. Membrane Biol. 40:25–38

    Google Scholar 

  • Palmer, L.G., Civan, M.M. 1975. Intracellular distribution of free-potassium inChironomus salivary glands.Science 188:1321–1322

    Google Scholar 

  • Palmer, L.G., Civan, M.M. 1977. Distribution of Na+, K+, and Cl between nucleus and cytoplasm inChironomus salivary gland cells.J. Membrane Biol. 33:41–61

    Google Scholar 

  • Ramsay, A.G., Gallagher, D.L., Shoemaker, R.L., Sachs, G. 1976. Barium inhibition of sodium ion transport in toad bladder.Biochim. Biophys. Acta 436:617–627

    Google Scholar 

  • Reuss, L., Weinman, S.A. 1979. Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium.J. Membrane Biol. 49:345–362

    Google Scholar 

  • Schultz, S.G. 1974. Principles of electrophysiology and their application to epithelial tissues.In: Gastrointestinal Physiology. E.D. Jacobson and C.S. Shanbour, editors. Vol. 4, p. 69. University Park Press, Baltimore

    Google Scholar 

  • Schultz, S.G. 1981. Homocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by “flush through.”Am. J. Physiol. 241:F579-F590

    Google Scholar 

  • Shorofsky, S.R., Field, M., Fozzard, H.A. 1983. Electrophysiology of Cl secretion in canine trachea.J. Membrane Biol. 72:105–115

    Google Scholar 

  • Smith, P.L., Frizzell, R.A. 1982. Changes in intracellular K activities after stimulation of Cl secretion in canine tracheal epithelium.Chest 81:5S

    Google Scholar 

  • Smith, P.L., Welsh, M.J., Stoff, J.S., Frizzell, R.A. 1982. Chloride secretion by canine tracheal epithelium: I. Role of intracellular cAMP levels.J. Membrane Biol. 70:217–226

    Google Scholar 

  • Welsh, M.J. 1983. Evidence for a basolateral membrane K conductance in canine tracheal epithelium.Am. J. Physiol. 244 (5:C377-C384

    Google Scholar 

  • Welsh, M.J., Smith, P.L., Frizzell, R.A. 1982. Chloride secretion by canine tracheal epithelium: II. The cellular electrical potential profile.J. Membrane Biol. 70:227–238

    Google Scholar 

  • Welsh, M.J., Smith, P.L., Frizzell, R.A. 1983. Chloride secretion by canine tracheal epithelium: III. Membrane resistances and electromotive forces.J. Membrane Biol. 71:209–218

    Google Scholar 

  • Westenfelder, C., Earnest, W.R., Al-Bazzar, F.J. 1980. Characterization of Na−K-ATPase in dog tracheal epithelium: Enzymatic and ion transport measurements.J. Appl. Physiol. 48:1008–1019

    Google Scholar 

  • White, J.F. 1976. Intracellular potassium activities inAmphiuma small intestine.Am. J. Physiol. 231:1214–1219

    Google Scholar 

  • Widdicombe, J.H., Basbaum, C.B., Highland, E. 1981. Ion contents and other properties of isolated cells from dog tracheal epithelium.Am. J. Physiol. 241:C184-C192

    Google Scholar 

  • Widdicombe, J.H., Basbaum, C.B., Yee, J.Y. 1979. Localization of Na pumps in the tracheal epithelium of the dog.J. Cell Biol. 82:380–390

    Google Scholar 

  • Widdicombe, J.H., Welsh, M.J. 1980. Ion transport by dog tracheal epithelium.Fed. Proc. 39:3062–3066

    Google Scholar 

  • Yonath, J., Civan, M.M. 1971. Determination of the driving force of the Na+ pump in toad bladder by means of vasopressin.J. Membrane Biol. 5:366–385

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, P.L., Frizzell, R.A. Chloride secretion by canine tracheal epithelium: IV. Basolateral membrane K permeability parallels secretion rate. J. Membrain Biol. 77, 187–199 (1984). https://doi.org/10.1007/BF01870568

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870568

Key Words

Navigation