Log in

Bioenergetics of alkalophilic bacteria

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The central problem for organisms which grow optimally, and in some cases obligately, at pH values of 10 to 11, is the maintenance of a relatively acidified cytoplasm. A key component of the pH homeostatic mechanism is an electrogenic Na+/H+ antiporter which—by virtue of kinetic properties and/or its concentration in the membrane—catalyzes net proton uptake while the organisms extrude protons during respiration. The antiporter is also capable of maintaining a constant pHin during profound elevations in pHout as long as Na+ entry is facilitated by the presence of solutes which are taken up with Na+. Secondary to the problem of acidifying the interior is the adverse effect of the large pH gradient, acid in, on the total pmf of alkalophile cells. For the purposes of solute uptake and motility, the organisms appear to largely bypass the problem of a low pmf by utilizing a sodium motive force for energization. However, ATP synthesis appears not to resolve the energetics problem by using Na+ or by incorporating the proton-translocating ATPase into intracellular organelles. The current data suggest that effective proton pum** carried out by the alkalophile respiratory chain at high pH may deliver at least some portion of the protons to the proton-utilizing catalysts, i. e., theF 1 F 0-ATPase and the Na+/H+ antiporter, by some localized pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando, A., Trie, S., Masuda, L.M., Matsushita, T., Fujji, T., Yabuki, M., Kusaka, T. 1983.Biochim. Biophys. Acta 734:290–294

    Google Scholar 

  • Ando, A., Yabuki, M., Kusaka, J. 1981.Biochim. Biophys. Acta 640:179–184

    Google Scholar 

  • Aronson, P.S., Nee, J., Suhm, M.A. 1982.Nature (London) 299:161–162

    Google Scholar 

  • Bassilana, M., Damiano, E., Leblanc, G. 1984.Biochemistry 23:1015–1022

    PubMed  Google Scholar 

  • Bonner, S., Mann, M.J., Guffanti, A.A., Krulwich, T.A. 1982.Biochim. Biophys. Acta 679:315–322

    Google Scholar 

  • Booth, J.R., Kroll, R.G. 1983.Biochem. Soc. Trans. 11:70–72

    PubMed  Google Scholar 

  • Chernyak, B.V., Dibrov, P.A., Glagolev, H.N., Sherman, M.Y., Skulachev, V.P. 1983.FEBS Lett. 164:38–42

    Google Scholar 

  • Crane, R.K. 1977.Rev. Physiol. Biochem. Pharmacol. 78:99–159

    PubMed  Google Scholar 

  • DasSarma, S., Rajbhandary, V.L., Khorana, H.G. 1983.Proc. Natl. Acad. Sci. USA 80:2201–2205

    PubMed  Google Scholar 

  • Ferguson, S.J., 1985.Biochim. Biophys Acta 811:47–95

    Google Scholar 

  • Garcia, M.L., Guffanti, A.A., Krulwich, T.A. 1983.J. Bacteriol. 156:1151–1157

    PubMed  Google Scholar 

  • Garland, P.B. 1977.Symp. Soc. Gen. Microbiol. 27:1–21

    Google Scholar 

  • Gee, J.M., Lund, B.M., Metcalf, G., Peel, J.L. 1980.J. Gen. Microbiol. 117:9–17

    Google Scholar 

  • Guffanti, A.A. 1983.FEMS Microbiol. Lett. 17:307–310

    Google Scholar 

  • Guffanti, A.A. Blanco, R., Benenson, R.A., Krulwich, T.A. 1980.J. Gen. Microbiol. 119:79–86

    Google Scholar 

  • Guffanti, A.A., Blanco, R., Krulwich, T.A. 1979.J. Biol. Chem. 254:1033–1037

    PubMed  Google Scholar 

  • Guffanti, A.A., Blumenfeld, H., Krulwich, T.A. 1981a J. Biol. Chem. 256:8416–8421

    Google Scholar 

  • Guffanti, A.A., Bornstein, R.F., Krulwich, T.A. 1981b.Biochim. Biophys. Acta 635:619–630

    PubMed  Google Scholar 

  • Guffanti, A.A., Chiu, E., Krulwich, T.A. 1985.Arch. Biochem. Biophys. 237:327–333

    Google Scholar 

  • Guffanti A.A., Cohn, D.E., Kaback, H.R., Krulwich, T.A. 1981a Proc. Natl. Acad. Sci. USA 78:1481–1484

    Google Scholar 

  • Guffanti, A.A., Eisenstein, H.C. 1983.J. Gen. Microbiol. 129:3239–3242

    Google Scholar 

  • Guffanti, A.A., Fuchs, R.T., Schneier, M., Chiu, E., Krulwich, T.A. 1984.J. Biol. Chem. 259:2971–2975

    PubMed  Google Scholar 

  • Guffanti, A.A., Susman, P., Blanco, R., Krulwich, T.A. 1978.J. Biol. Chem. 253:708–715

    PubMed  Google Scholar 

  • Hamaide, F. Kushner D.J., Sprott, G.D. 1983.J. Bacteriol. 156:537–544

    PubMed  Google Scholar 

  • Harold, F.M. 1977.Curr. Topics Bioenerg. 6:83–115

    Google Scholar 

  • Hirata, H., Kambe, T., Kagawa, Y. 1984.J. Biol. Chem. 259:10653–10656

    PubMed  Google Scholar 

  • Hirota, N., Imae, Y. 1983.J. Biol. Chem. 258:10577–10581

    PubMed  Google Scholar 

  • Hirota, N., Kitada, M., Imae, Y. 1981.FEBS Lett. 132:278–280

    Google Scholar 

  • Hoddinott, M.H., Reid, G.A., Ingledew, W.J. 1978.Biochem. Soc. Trans. 6:1295–1298

    PubMed  Google Scholar 

  • Honda, H., Kudo, T., Horikoshi, K. 1985.J. Bacteriol. 161:784–785

    PubMed  Google Scholar 

  • Horikoshi, K., Akiba, T. 1982. Alkalophilic Microorganisms. A New Microbial World. Springer-Verlag. New York

    Google Scholar 

  • Kaczorowski, G.J., Kaback, H.R. 1979.Biochemistry 19:369–3697

    Google Scholar 

  • Kallas, T., Castenholz, R.W. 1982.J. Bacteriol. 149:237–246

    PubMed  Google Scholar 

  • Kashket, E.R., Blanchard, A.G., Metzger, W.C. 1980.J. Bacteriol. 143:128–134

    PubMed  Google Scholar 

  • Kitada, M., Guffanti, A.A., Krulwich, T.A. 1982.J. Bacteriol. 152:1096–1104

    PubMed  Google Scholar 

  • Kitada, M., Horikoshi, K. 1977.J. Bacteriol. 131:784–788

    PubMed  Google Scholar 

  • Kitada, M., Horikoshi, K. 1979.Agric. Biol. Chem. 45:2273–2277

    Google Scholar 

  • Kitada, M., Horikoshi, K. 1980a.J. Biochem. 87:1279–1284

    PubMed  Google Scholar 

  • Kitada, M., Horikoshi, K. 1980b.J. Biochem. 88:1757–1764

    PubMed  Google Scholar 

  • Kitada, M., Krulwich, T.A. 1984.J. Bacteriol. 158:965–966

    Google Scholar 

  • Kitada, M., Lewis, R.J., Krulwich, T.A. 1983.J. Bacteriol. 154:330–335

    PubMed  Google Scholar 

  • Koga, Y., Nishihara, N., Morii, H. 1982.J. Univ. Occupat. Environ. Health 4:227–240

    Google Scholar 

  • Koyama, N., Kiyamiya, A., Nosoh, Y. 1976.FEBS Lett. 72:77–78

    PubMed  Google Scholar 

  • Koyama, N., Koshiya, K., Nosoh, Y. 1980.Arch. Biochem. Biophys. 199:105–109

    Google Scholar 

  • Koyama, N., Nosoh, Y. 1985.Biochim. Biophys. Acta 812:206–212

    Google Scholar 

  • Koyama, N., Takinishi, H., Nosoh, Y. 1983.FEMS Microbiol. Lett. 16:213–216

    Google Scholar 

  • Kroll, R.G., Booth, I.R. 1983.Biochem. J. 216:709–716

    PubMed  Google Scholar 

  • Krulwich, T.A. 1982.FEMS Microbiol. Lett. 15:299–301

    Google Scholar 

  • Krulwich, T.A. 1983.Biochem. Biophys. Acta 726:245–264

    PubMed  Google Scholar 

  • Krulwich, T.A., Agus, R., Schneier, M., Guffanti, A.A. 1985a.J. Bacteriol. 162:768–772

    PubMed  Google Scholar 

  • Krulwich, T.A., Federbush, J.G., Guffanti, A.A. 1985b.J. Biol. Chem. 260:4055–4058

    PubMed  Google Scholar 

  • Krulwich, T.A., Guffanti, A.A. 1983.Adv. Microb. Physiol. 24:173–214

    PubMed  Google Scholar 

  • Krulwich, T.A., Guffanti A.A., Bornstein, R.F., Hoffstein, J. 1982.J. Biol. Chem. 257:1885–1889

    PubMed  Google Scholar 

  • Krulwich, T.A., Mandel, K.G., Bornstein, R.F., Guffanti, A.A. 1979.Biochem. Biophys. Res. Commun. 91:58–62

    PubMed  Google Scholar 

  • Kudo, T., Kato, C., Horikoshi, K. 1983.J. Bacteriol. 156:949–951

    PubMed  Google Scholar 

  • Kudo, T., Yoshitake, J., Kato, C., Usami, R., Horikoshi, K. 1985.J. Bacteriol. 161:158–163

    PubMed  Google Scholar 

  • Lanyi, J.K.. 1979.Biochim. Biophys. Acta 559:377–397

    PubMed  Google Scholar 

  • Lewis, R.J., Belkina, S., Krulwich, T.A. 1980.Biochem. Biophys. Res. Commun. 95:857–863

    PubMed  Google Scholar 

  • Lewis, R.J., Kaback, E., Krulwich, T.A. 1982.J. Gen. Microbiol. 128:427–930

    Google Scholar 

  • Lewis, R.J., Krulwich, T.A., Reynafarje, B., Lehninger, A.L. 1983.J. Biol. Chem. 258:2109–2111

    PubMed  Google Scholar 

  • Lewis, R.J., Prince, R.C., Dutton, P.L., Knaff, D.B., Krulwich, T.A. 1981.J. Biol. Chem. 256:10543–10549

    Google Scholar 

  • Mandel, K.G., Guffanti A.A. Krulwich, T.A. 1980.J. Biol. Chem. 255:7391–7396

    PubMed  Google Scholar 

  • McLaggan, D., Selwyn, M.J., Dawson, A.P. 1984.J. Bacteriol. 159:100–106

    PubMed  Google Scholar 

  • Mitchell, P. 1961.Nature (London) 191:144–148

    Google Scholar 

  • Mitchell, P. 1963.Biochem. Soc. Symp. 22:142–168

    Google Scholar 

  • Nakamura, T., Tokuda, H., Unemoto, T. 1984.Biochim. Biophys. Acta 776:330–336

    PubMed  Google Scholar 

  • Newman, M.J., Foster, D.L., Wilson, T.H., Kaback, H.R. 1981.J. Biol. Chem. 256:11804–11808

    Google Scholar 

  • Niiya, S., Yamasaki, K., Wilson, T.H., Tsuchiya, T. 1982.J. Biol. Chem. 257:8902–8906

    PubMed  Google Scholar 

  • Nishihara, N., Morii, H., Koga, Y. 1982.J. Biochem. 92:1469–1479

    PubMed  Google Scholar 

  • Pfeifer, F., Betlach, M., Martienssen, R., Friedman, J., Boyer, H.W. 1983.Mol. Gen. Genet. 191:182–188

    Google Scholar 

  • Ramos, S., Schuldiner, S., Kaback, H.R. 1976.Proc. Natl. Acad. Sci. USA 73:1892–1896

    PubMed  Google Scholar 

  • Rottenberg, H. 1984.J. Membrane Biol. 81:127–138

    Google Scholar 

  • Rowland, G.C., Giffard, P.M., Booth, I.R. 1984.FEBS Lett.173:295–300

    PubMed  Google Scholar 

  • Schuldiner, S., Kaback, H.R. 1975.Biochemistry 14:5451–5461

    PubMed  Google Scholar 

  • Seto-Young, D., Garcia, M.L., Krulwich T.A. 1985.J. Biol. Chem. 260:11393–11395

    PubMed  Google Scholar 

  • Shioi, J.-I., matsuura, S., Imae, Y. 1980.J. Bacteriol. 144:891–897

    PubMed  Google Scholar 

  • Shiota, S., Yazyu, H., Tsuchiya, T., 1984.J. Bacteriol. 160:445–447

    PubMed  Google Scholar 

  • Skulachev, V.P. 1982.FEBS Lett. 146:1–4

    Google Scholar 

  • Skulachev, V.P. 1984.Trends Biochem. Sci. 9:483–485

    Google Scholar 

  • Strekas, J.C., 1984.Biochim. Biophys. Acta 765:133–137

    PubMed  Google Scholar 

  • Sugiyama, S., Matsukura, H., Imae, Y. 1985.FEBS Lett. 182:265–268

    PubMed  Google Scholar 

  • Takinishi, H., Sekiguchi, T., Koyama, M., Shishido, K., Nosohi, Y. 1983.FEBS Lett. 154:201–204

    PubMed  Google Scholar 

  • Tindall, B.J., Mills, A.A., Grant, W.D. 1980.J. Gen Microbiol. 116:257–260

    Google Scholar 

  • Tokuda, H., Unemoto, T. 1981.Biochem. Biophys. Res. Commun. 102:265–271

    Google Scholar 

  • Tokuda, H., Unemoto, T. 1982.J. Biol. Chem. 257:10007–10014

    PubMed  Google Scholar 

  • Westerhoff, H.V., Melandri, B.A., Venturoli, G., Azzone, G.T., Kell, D.B. 1984.Biochem. Biophys. Acta 768:257–292

    PubMed  Google Scholar 

  • Zilberstein, D., Agmon, V., Schuldiner, S., Padan, E. 1982a.J. Biol. Chem. 257:3687–3691

    PubMed  Google Scholar 

  • Zilberstein, D., Agmon, V., Schuldiner, S., Padan, E., 1984.J. Bacteriol. 158:246–252

    PubMed  Google Scholar 

  • Zilberstein, D., Ophir, T.Y., Padan, E., Schuldiner, S. 1982b.J. Biol. Chem. 257:3692–3696

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krulwich, T.A. Bioenergetics of alkalophilic bacteria. J. Membrain Biol. 89, 113–125 (1986). https://doi.org/10.1007/BF01869707

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869707

Key words

Navigation