Log in

The Z-band lattice in skeletal muscle before, during and after tetanic contraction

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Electron micrographs and optical diffraction patterns of the Z-band were studied in rat soleus muscle fixed before, during, and after tetanic contraction. We compared the morphology (small square or basketweave pattern) and dimensions of the Z-lattice of control and tetanized muscles near rest length. Z-bands of muscle fixed at rest and of muscle allowed to rest after a tetanic contraction exhibited the small square pattern. Z-bands from muscle fixed during tetanic contraction exhibited the basketweave pattern. Concomitant with the transition to basketweave, we observed an average increase of 20% in spacing between the axial filaments of the Z-lattice. Optical diffraction measurements of the A-bandd 10 spacing revealed that the Z/A ratio remained constant during the transition. We have modelled the small square to basketweave transformation as resulting from a change of curvature of constant length cross-connecting Z-filaments when the axial filaments increase their separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Caspar, D. L. D., Cohen, C. &Longley, W. (1969) Tropomyosin: Crystal structure, polymorphism, and molecular interactions.J. molec. Biol. 41, 87–107.

    Google Scholar 

  • Davey, D. F. (1976) The relation between Z-disk lattice spacing and sarcomere length in sartorius muscle fibers fromHyla cerulea.Aust. J. exp. Biol. Med. Sci. 54, 441–7.

    Google Scholar 

  • Elliott, G. F., Lowy, J. &Millman, B. M. (1967) Low-angle X-ray diffraction studies of living striated muscle during contraction.J. molec. Biol. 25, 31–45.

    Google Scholar 

  • Fardeau, M. (1969a) Ultrastructure des fibres musculaires squelettiques (1).La Presse Medicale 77, 1341–4.

    Google Scholar 

  • Fardeau, M. (1969b) Etude d'une nouvelle observation de ‘Nemaline Myopathy’. II. Donnees Ultrastructurales.Acta neuropath. 13, 250–66.

    Google Scholar 

  • Franzini-Armstrong, C. (1973) The structure of a simple Z line.J. Cell Biol. 58, 630–42.

    Google Scholar 

  • Goldstein, M. A., Schroeter, J. P. &Sass, R. L. (1977) Optical diffraction of the Z lattice in canine cardiac muscle.J. Cell Biol. 75, 818–36.

    Google Scholar 

  • Goldstein, M. A., Schroeter, J. P. &Sass, R. L. (1979) The Z lattice in canine cardiac muscle.J. Cell Biol. 83, 187–204.

    Google Scholar 

  • Goldstein, M. A., Stromer, M. H., Schroeter, J. P. &Sass, R. L. (1980) Optical reconstruction of nemaline rods.Exp. Neurol. 70, 83–97.

    Google Scholar 

  • Goldstein, M. A., Schroeter, J. P. &Sass, R. L. (1982) The Z-band lattice in a slow skeletal muscle.J. Musc. Res. Cell Motility 3, 333–48.

    Google Scholar 

  • Kelly, D. E. (1967) Models of muscle Z-band fine structure based on a loo** filament configuration.J. Cell Biol. 34, 827–40.

    Google Scholar 

  • Kelly, D. E. &Cahill, M. A. (1972) Filamentous and matrix components of skeletal muscle Z disks.Anat. Rec. 172, 623–42.

    Google Scholar 

  • Knappeis, G. G. &Carlsen, F. (1962) The ultrastructure of the Z disc in skeletal muscle.J. Cell Biol. 13, 323–35.

    Google Scholar 

  • Landon, D. N. (1970a) The influence of fixation upon the fine structure of the Z disc of rat striated muscle.J. Cell Sci. 6, 257–76.

    Google Scholar 

  • Landon, D. N. (1970b) Change in Z-disc structure with muscular contraction.J. Physiol., Lond. 211, 44–45.

    Google Scholar 

  • MacDonald, R. D. &Engel, A. G. (1971) Observations on organization of Z disc components and on rod-bodies of Z disc origin.J. Cell Biol. 48, 431–6.

    Google Scholar 

  • Magid, A. &Reedy, M. K. (1980) X-ray diffraction observations of chemically skinned frog skeletal muscle processed by an improved method.Biophys. J. 30, 27–40.

    Google Scholar 

  • Podlubnaya, Z. A., Tskhovrebove, L. A., ZaalishiVili, M. M. &Stefanenko, G. A. (1975) Electron microscopic study of alpha-actinin.J. molec. Biol. 95, 85–90.

    Google Scholar 

  • Reedy, M. K. (1964) The structure of actin filaments and the origin of the axial periodicity in the I substance of vertebrate striated muscle.Proc. R. Soc. Ser. B. 160, 458–60.

    Google Scholar 

  • Schroeter, J. P., Goldstein, M. A. &Sass, R. L. (1983) Modeling filamentous structures of the Z band using DRAW3D.Proc. 11th Annual PROPHET User's Colloqium, Airlie, Virginia.

  • Yamaguchi, M., Izumimoto, M., Robson, R. M. &Stromer, M. H. (1985) Fine structure of wide and narrow vertebrate muscle Z lines.J. molec. Biol. 184, 621–44.

    Google Scholar 

  • Yu, L. C., Lymn, R. W. &Podolsky, R. J. (1977) Characterization of a non-indexible equatorial X-ray reflection from frog sartorious muscle.J. molec. Biol. 115, 455–64.

    Google Scholar 

  • Zappe, H. A. &Maeda, Y. (1985) X-ray diffraction study of fast and slow mammalian skeletal muscle in the live relaxed state.J. molec. Biol. 185, 211–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldstein, M.A., Michael, L.H., Schroeter, J.P. et al. The Z-band lattice in skeletal muscle before, during and after tetanic contraction. J Muscle Res Cell Motil 7, 527–536 (1986). https://doi.org/10.1007/BF01753569

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01753569

Keywords

Navigation