Log in

Physiology of the prostate

Physiologie der Prostata

  • Pathophysiology
  • Published:
Infection Aims and scope Submit manuscript

Summary

The presence of the prostate is universal in mammals; when compared among species the prostate is marked by variations in its anatomy, biochemistry and pathology. The epithelial cells provide secretions that empty through ducts into the urethra to form a major component of the seminal plasma of the ejaculate. The prostate is stimulated to grow and is maintained in size and function by the presence of serum testosterone. Several protein-type growth factors, such as urogastrone and prostatropin, may also affect prostatic growth. After testosterone from the plasma has entered the prostatic cell through diffusion it is metabolized to other steroids by a series of enzymes. Over 95% of testosterone is converted to the most important prostatic androgen dihydrotestosterone. DHT then binds to the activated androgen receptor. The hormone receptor complex undergoes transformation and translocation into the nucleus. In the nucleus RNA-polymerase is activated followed by the synthesis of mRNA. The noncellular stroma and connective tissue compose the extracellular matrix. The extracellular matrix plays an important role in development and control of cellular functions.

Zusammenfassung

Die Prostata findet man bei allen Säugern, wobei jedoch innerhalb der einzelnen Arten die Anatomie, die Biochemie und Pathologie der Drüse sehr unterschiedlich ausgeprägt ist. Die Epithelzellen produzieren ein Sekret, das über die Drüsenschläuche in die hintere Harnröhre abgegeben wird und einen wesentlichen Teil des Seminalplasma ausmacht. Wachstum und Funktion der Prostata wird primär durch Testosteron gesteuert, was wiederum eine normal funktionierende Hormonachse, beginnend im Hypothalamus über die Hypophyse und den Hoden, voraussetzt. Wachstumsfaktoren wie Urgogastron und Prostatropin beeinflussen ebenfalls das Wachstum der Prostata. Testosteron gelangt durch Diffusion in die Prostatazelle und wird dort durch Enzyme in andere Steroide transformiert. Über 95% des Testosterons wird zu Dihydrotestosteron (DHT), dem wichtigsten prostatischen Androgen, metabolisiert und bildet den Androgen-Rezeptorenkomplex, der innerhalb des Zellkerns die entsprechenden Proteinsynthesen induziert. Die extrazelluläre Matrix umfaßt Stroma und Bindegewebe. Diese Matrix steht jedoch in enger Verbindung mit den zellulären Funktionen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coffey, D. S. Bichemistry and physiology of the prostate and seminal vesicles. In:Walsh P. C. (ed.): Campbell's Urology, 5th ed., W. B. Saunders, Philadelphia 1985, pp. 1081–1121.

    Google Scholar 

  2. Grayhack, J. T. Pituitary factors influencing growth of the prostate. NCI Monogr. 12 (1963) 189–199.

    Google Scholar 

  3. Isaacs, W. B., Shaper, J. H. Isolation and characterization of the major androgen-dependent glycoprotein of canine prostatic fluid. J. Biol. Chem. 258 (1983) 6610–6615.

    Google Scholar 

  4. Bruchovsky, N., Wilson, J. D. The conversion of testosterone to 5 α-androstan-17β-ol-3-one by rat prostatein vivo andin vitro. J. Biol. Chem. 243 (1968) 2012–2121.

    Google Scholar 

  5. Lasnitzki, L., Franklin, H. R. The influence of serum on uptake, conversion and action of testosterone in rat prostate glands in organ culture. J. Endocrinol. 54 (1972) 333–342.

    Google Scholar 

  6. Trachtenberg, J., Hicks, L. L., Walsh, P. C. Methods for the determination of androgen receptor concentration in human prostatic tissue. Invest. Urol. 18 (1981) 349–354.

    Google Scholar 

  7. Jacobs, S. C., Pikna, D., Lawson, R. K. Prostatic osteoblastic factor. Invest. Urol. 17 (1979) 195–198.

    Google Scholar 

  8. O'Connor, T., Sinha, D. K. Characterization of rat ventral prostatic epithelial cells in collagen gel culture. Prostate 7 (1985) 305–319.

    Google Scholar 

  9. Niemi, M., Harkonen, M., Larmi, T. K. Enzymic histochemistry of human prostate. Arch. Pathol. 75 (1963) 528–537.

    Google Scholar 

  10. Bruchovsky, N., Dunstan-Adams, E.: Regulation of 5 α-reductase activity in stroma and epithelium of human prostate. In:Bruchovsky, N., Chapdelaine, A., Neumann, F. (eds): Regulation of androgen action. Proceedings of an Intern. Symposium. Congressdruck R. Bruckner, Berlin 1985, pp. 31–34.

  11. Isaacs, J. T., Barrack, E. R., Isaacs, W. B., Coffey, D. S. The relationship of cellular structure and function: The matrix systems. In:Murphy, G. P., Sandberg, A. A., Karr, J. P. (eds): The prostatic cell: Structure and function, Vol. 75A, Alan R. Liss, New York 1981, pp. 1–24.

    Google Scholar 

  12. Eliasson, R. Seminal plasma accessory genital glands and fertility. In:Cockett, A. T. K., Urry, R. L. (eds): Male infertility: Workup, treatment and research. Grune & Stratton, New York 1977, pp. 189–204.

    Google Scholar 

  13. Heathcote, J. G., Washington, R. J. Analysis of the zinc binding protein derived from the human benign hypertrophic prostate. J. Endocrinol. 58 (1973) 421–423.

    Google Scholar 

  14. Huggins, C. The prostatic secretion. Harvey Lect. 42 (1947) 148.

    Google Scholar 

  15. Huggins, C., Neal, W. Coagulation and liquefaction of semen. Proteolytic enzymes and citrate in prostatic fluid. J. Exp. Med. 76 (1942) 527–541.

    Google Scholar 

  16. Fair, W. R., Wehner, N. The prostatic antibacterial factor: Identity and significance. Prog. Clin. Biol. Res. 6 (1976) 383–403.

    Google Scholar 

  17. Bergstrom, S., Carlson, L. A., Weeks, L. R. The prostaglandins: A family of biologically active lipids. Pharmacol. Rev. 20 (1986) 1–48.

    Google Scholar 

  18. Eliasson, R. Studies on prostaglandins. Occurrence, formation, and biological actions. Acta Physio. Scand. 158 (Suppl. 46) (1959) 1.

    Google Scholar 

  19. von Euler, U. S. Zur Kenntnis der pharmakologischen Wirkung von Nativsekreten und Extrakten männlicher accessorischer Geschlechtsdrüsen. Arch. Pathol. Pharmacol. 175 (1934) 78–84.

    Google Scholar 

  20. Wang, M. C., Valenzuela, L. A., Murphy, G. P., Chu, T. M. Purification of a human prostate specific antigen. Invest. Urol. 17 (1979) 159–163.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frick, J., Aulitzky, W. Physiology of the prostate. Infection 19 (Suppl 3), S115–S118 (1991). https://doi.org/10.1007/BF01643679

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01643679

Keywords

Navigation