Log in

The pressure ensemble as a tool for describing the hadron-quark phase transition

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

We apply the technique of Gaussian regularization to the grand canonical pressure partition function to show that under physically meaningful boundary conditions (non-existence of external confining vessels, i.e., no fixed volumes) the energy density and similar intensive quantities have, in a statistical bootstrap model of extended hadrons (Van der Waals type volume corrections), indeed the singularity claimed in previous papers. Earlier results obtained with an entirely different technique (which had been criticized) are recovered and shown to be correct. The technique used here is useful in all cases where the volume is not imposed from the outside, but results from the internal dynamics of the system as is generally the case in high energy physics and astrophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Baacke: Acta Phys. Pol.B8, 625 (1977)

    Google Scholar 

  2. This fact has been known already to cosmic ray physicists and has been stated in so many papers that it is impossible to list them all. Let two more recent ones represent the whole lot:

  3. A.T. Laasanen et al.: Phys. Rev. Lett.38, 1 (1977)

    Google Scholar 

  4. G.W. Van Appeldoorn, et al.: Z. Phys. C—Particles and Fields,7, 235 (1981)

    Google Scholar 

  5. We do not consider here Monte Carlo lattice calculations which indeed may cover both sides and do suggest a phase transition, but which cannot exhibit singularities in the strict sense. See, e.g., J. Engels, F. Karsch, I. Montvay, H. Satz: Phys. Lett.102B, 332 (1981) and references therein

    Google Scholar 

  6. R. Hagedorn, J. Rafelski: Phys. Lett.97B, 136 (1980)

    Google Scholar 

  7. R. Hagedorn, J. Rafelski: From hadron gas to quark matter I. In: Statistical mechanics of quarks and hadrons, H. Satz (Ed.), Amsterdam: North Holland 1981

    Google Scholar 

  8. N. Cabibbo, G. Parisi: Phys. Lett.59B, 67 (1974)

    Google Scholar 

  9. J.I. Kapusta: Nucl. Phys.B148, 461 (1979);

    Google Scholar 

  10. O.K. Kalashnikov, V.V. Klimov: Phys. Lett.88B, 328 (1979);

    Google Scholar 

  11. J. Kuti, J. Polonyi, K. Szalachani: Phys. Lett.98B, 199 (1981);

    Google Scholar 

  12. J. Rafelski, R. Hagedorn: From hadron gas to quark matter II. In: H. Satz (Ed.)loc. cit.

    Google Scholar 

  13. S.A. Chin: Phys. Lett.78B, 552 (1978).

    Google Scholar 

  14. E. Shuryak: Phys. Rep.61, 71 (1980).

    Google Scholar 

  15. V.V. Dixit, F. Karsch, H. Satz: Phys. Lett.101B, 412 (1981)

    Google Scholar 

  16. E.A. Guggenheim: J. Chem. Phys.7, 103 (1939)

    Google Scholar 

  17. I. Prigogine: Physica16, 133 (1950)

    Google Scholar 

  18. A. Münster Statistical thermodynamics, Chap. 3.1, 3.2, Berlin, Heidelberg, New York: Springer 1969

    Google Scholar 

  19. A. Münster:loc. cit

    Google Scholar 

  20. A. Chodos et al.: Phys. Rev.D9, 3471 (1974)

    Google Scholar 

  21. B. Touschek: Nuovo CimentoB58, 295 (1968)

    Google Scholar 

  22. R. Hagedorn, I. Montvay, J. Rafelski: In: Hadronic matter at extreme energy density, N. Cabibbo, L. Sertorio (Eds.) New York: Plenum Press 1980

    Google Scholar 

  23. R. Hagedorn, J. Rafelski: Commun. Math. Phys.83, 563–578 (1982).

    Google Scholar 

  24. M.I. Gorenstein, V.K. Petrov, G.M. Zinovjev: Phys. Lett.106B, 327 (1981)

    Google Scholar 

  25. J. Kapusta: Nucl. Phys.B196, 1 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagedorn, R. The pressure ensemble as a tool for describing the hadron-quark phase transition. Z. Phys. C - Particles and Fields 17, 265–281 (1983). https://doi.org/10.1007/BF01578153

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01578153

Keywords

Navigation