Log in

Thermal-wave resonant-cavity measurements of the thermal diffusivity of air: A comparison between cavity-length and modulation-frequency scans

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The application of a thermal-wave resonant cavity to thermal-diffusivity measurements of gases has been investigated. The cavity was constructed using a thin aluminum foil wall as the intensitv-modulated laser-beam oscillator source opposite a pyroclectric polyvilidene fluoride wall acting as a signal transducer. Theoretically, cavity-length and modulation-frequency scans both produce resonance-like extrema in lock-in in-phase and quadrature curses. These extrema can be used to measure the thermal diffusivity of the gas within the cavity. It was found experimentally that one can obtain. very accurate and reproducible measurements of the thermal diffusivity of the gas by using simple cavity-length scanning without any signal normalization procedure. rather than traditional modulation-frequency scanning; normalized by the frequency-dependent transfer function of the instrumentation. By scanning the cavity length, the thermal diffisivity of room air at 299 K was measured with three-significant figure precision as 0.216±11.001 cm2·s−1, with a standard deviation 0.5%. Only two significant figure accuracy could be obtained by scanning the frequency: 0.22±0.03 cm2·s−1, with a standard deviation of 14%. Cavity-length scanning consistently exhibited a much higher signal-to-noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and M. C. Nicolaou,Thermal Diffusivity (IFI Plenum, New York, 1973).

    Google Scholar 

  2. A. Mandelis and J. D. Lymer,Appl. Spectrosc. 39:473 (1985).

    Google Scholar 

  3. P. E. Nordal and S. O. Kanstad,Phys. Ser. 20:659 (1979).

    Google Scholar 

  4. R. Santos and L. C. M. Miranda,J.Appl. Phys. 52:4192 (1981).

    Google Scholar 

  5. R. D. Tom, E. P. O'Hara, and D. Benin.J. Appl. Phys. 53:5392 (1982).

    Google Scholar 

  6. W. P. Leung and A. C. Tam,J. Appl. Phys. 56:153 (1984).

    Google Scholar 

  7. A. C. Boccara, D. Fournier. and J. Badoz,Appl. Phys. Lett. 36:130 (1980).

    Google Scholar 

  8. W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier,Appl. Opt. 20:1333 (1981).

    Google Scholar 

  9. L. C. Aamodt and J. C. Murphy,J. Appl. Phys. 54:581 (1983).

    Google Scholar 

  10. P. K. Kuo, M. J. Lin, C. B. Reyes, L. D. Favro, R. L. Thomas, D. S. Kim, S. V. Zhang, L. J. Inglehart, D. Fournier, A. C. Boccara, and N. Yacoubi,Can J. Phys. 64:1165 (1986).

    Google Scholar 

  11. P. K. Kuo, E. D. Sendler, L. D. Favro. and R. L. Thomas,Can. J. Phys. 64:1168 (1986).

    Google Scholar 

  12. T. R. Anthony, W. F. Banholzer, J. F. Fleischer, L. H. Wei, P. K. Kuo, R. L. Thomas. and R. W. Pryor,Phys. Rev. B 42:1104 (1990).

    Google Scholar 

  13. A. Mandelis (ed.),Progress in Photothermal and Photoacoustic Science and Technology, Vol. II (Prentice Hall, Englewood Cliffs, N.J. 1993).

    Google Scholar 

  14. P. K. John, L. C. M. Miranda. and A. C. Rastogi.Phys. Rev. B 34:4342 (1986)

    Google Scholar 

  15. M. Munidasa and A. Mandelis,Rev. Sci. Instrum. 65:2344 (1994).

    Google Scholar 

  16. A. Mandelis, J. Vanniasinkam, S. Budhuddu, A. Othonos, and M. Kokta,Phys. Rev. B1 48:6808 (1993).

    Google Scholar 

  17. J. Vanniasinkam, A. Mandelis, S. Budhuddu, and M. Kokta,J. Appl. Phys. 75:8090 (1994).

    Google Scholar 

  18. J. Shen and A. Mandelis,Rev. Sci. Instrum. 66:4999 (1995).

    Google Scholar 

  19. L. E. Kinsler and A. R. Fray,Fundamentals of Acoustics, 2nd ed. (Wiley, New York, 1962). Chap. 8.7.

    Google Scholar 

  20. J. P. Holman,Heat Transfer, 7th ed. (McGraw Hill, New York, 1990).

    Google Scholar 

  21. A. Rosenewaig,Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York, 1980). p. 96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, J., Mandelis, A. & Aloysius, B.D. Thermal-wave resonant-cavity measurements of the thermal diffusivity of air: A comparison between cavity-length and modulation-frequency scans. Int J Thermophys 17, 1241–1254 (1996). https://doi.org/10.1007/BF01438667

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01438667

Key words

Navigation