Log in

On the possibility of orienting rotationally cooled polar molecules in an electric field

  • Original Contributions
  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

It has long been thought that only symmetric top molecules (or equivalent) can be appreciably oriented in an electric field. This assessment is unduly pessimistic. In molecular beams produced by supersonic expansion, the rotational temperature can be made very low (∼ 1 K). For many diatomic, linear, or asymmetric top molecules, quite substantial orientation can thereby be attained for a large fraction of the beam at accessible field strengths (∼ 100 kV/cm or less). We present model calculations and an experimental design to evaluate the method by observing the fluorescence of photofragments from oriented molecules. Nomograms are provided from which the orientation can be estimated for linear molecules from the dipole moment, rotational constant, rotational temperature, and field strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beuhler, R.J., Bernstein, R.B., Kramer, K.H.: J. Am. Chem. Soc.88, 5331 (1966)

    Google Scholar 

  2. Brooks, P.R., Jones, E.M.: J. Chem. Phys.45, 3449 (1966)

    Google Scholar 

  3. Parker, D.H., Bernstein, R.B.: Ann. Rev. Phys. Chem.40, 561 (1989) and references cited therein

    Google Scholar 

  4. Brooks, P.R.: Science193, 11 (1976)

    Google Scholar 

  5. Stolte, S.: Ber. Bunsenges. phys. Chem.86, 413 (1982);

    Google Scholar 

  6. Stolte, S.: In: Atomic and molecular beam methods. Scoles, G. (ed.), p. 631. New York: Oxford University Press 1988

    Google Scholar 

  7. Kaesdorf, S., Schönhense, G., Heinzmann, U.: Phys. Rev. Lett.54, 885 (1985);

    Google Scholar 

  8. Gandhi, S.R., Bernstein, R.B.: Z. Phys. D — Atoms, Molecules and Clusters10, 179 (1988)

    Google Scholar 

  9. Mackay, R.S., Curtiss, T.J., Bernstein, R.B.: J. Chem. Phys.92, 801 (1990)

    Google Scholar 

  10. Brooks, P.R., Jones, E.M., Smith, K.: J. Chem. Phys.51, 3073 (1969)

    Google Scholar 

  11. Bernstein, R.B., Herschbach, D.R., Levine, R.D.: J. Phys. Chem.97, 5365 (1987)

    Google Scholar 

  12. Townes, C.H., Shawlow, A.L.: Microwave spectroscopy, p. 248. New York: McGraw-Hill 1955

    Google Scholar 

  13. Kais, S., Levine, R.D.: J. Phys. Chem.91, 5462 (1987)

    Google Scholar 

  14. Pullman, D.P., Friedrich, B., Herschbach, D.R.: J. Chem. Phys.90, 3881 (1989); J. Chem. Phys.93, 3224 (1990)

    Google Scholar 

  15. Lübbert, A., Rotzoll, G., Günther, F.: J. Chem. Phys.69, 5174 (1978)

    Google Scholar 

  16. Presented as part of a talk entitled Bringing Molecules to Attention: A Salute to J.P. Toennies, at the Festkolloquium anlässlich des sechzigsten Geburtstags von Herrn Professor J.P. Toennies, Max-Planck-Institut für Strömungsforschung, Göttingen (1 June, 1990)

  17. Loesch, H.J., Remscheid, A.: J. Chem. Phys.93, 4779 (1990)

    Google Scholar 

  18. Herschbach, D.R.: Faraday Disc. Chem. Soc.84, 465 (1987)

    Google Scholar 

  19. Meyenn, K. von: Z. Phys.231, 154 (1970)

    Google Scholar 

  20. Tables Relating to Mathieu Functions, prepared by The Computational Laboratory of the National Applied Mathematics Laboratories, National Bureau of Standards. New York: Columbia University Press 1951;

  21. Stejskal, E.O., Gutowsky, H.S.: J. Chem. Phys.28, 388 (1958)

    Google Scholar 

  22. Hsu, D.S.Y., Weinstein, N.D., Herschbach, D.R.: Mol. Phys.29, 157 (1975)

    Google Scholar 

  23. O. Stern as quoted by Fraser, R.G.F.: In: Molecular rays, pp. 156–160. London: Cambridge University Press 1931

    Google Scholar 

  24. Marinelli, W.J., Sivakumar, N., Houston, P.L.: J. Phys. Chem.88, 6685 (1984)

    Google Scholar 

  25. Joswig, H., O'Halloran, M.A., Zare, R.N., Child, M.S.: Faraday Discuss. Chem. Soc.82, 79 (1986)

    Google Scholar 

  26. Zare, R.N.: Angular Momentum: Understanding Spatial Aspects in Physics and Chemistry. New York: Wiley-Interscience 1988

    Google Scholar 

  27. Golden, S., Wilson, E.B.: J. Chem. Phys.16, 669 (1948)

    Google Scholar 

  28. Ramsey, N.F.: Molecular beams. London: Oxford University Press 1956

    Google Scholar 

  29. Herman, Z., Birkinshaw, K.: Ber. Bunsen Ges. phys. Chem.77, 566 (1973)

    Google Scholar 

  30. Xu, Q.-X., Quesada, M.A., Jung, K.-H., Mackay, R.S., Bernstein, R.B.: J. Chem. Phys.91, 3477 (1989);

    Google Scholar 

  31. Gandhi, S.R., Bernstein, R.B.: J. Chem. Phys.93, 4024 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, B., Herschbach, D.R. On the possibility of orienting rotationally cooled polar molecules in an electric field. Z Phys D - Atoms, Molecules and Clusters 18, 153–161 (1991). https://doi.org/10.1007/BF01437441

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01437441

PACS

Navigation