Log in

Finite element solution of nonlinear elliptic problems

  • Convergence of the SSOR Method for Nonlinear Systems of Simultaneous Equations
  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

The study of the finite element approximation to nonlinear second order elliptic boundary value problems with mixed Dirichlet-Neumann boundary conditions is presented. In the discretization variational crimes are commited (approximation of the given domain by a polygonal one, numerical integration). With the assumption that the corresponding operator is strongly monotone and Lipschitz-continuous and that the exact solutionuH 1(Ω), the convergence of the method is proved; under the additional assumptionuH 2(Ω), the rate of convergenceO(h) is derived without the use of Green's theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland 1978

    Google Scholar 

  2. Ciarlet, P.G., Raviart, P.A.: The combined effect of curved boundaries and numerical integration in isoparametric finite element method. In: The Mathematical Foundation of the Finite Element Method with Applications to Partial Differential Equations (A.K. Aziz, ed.), pp. 409–474, New York: Academic Press 1972

    Google Scholar 

  3. Ciarlet, P.G., Schultz, M.H., Varga, R.S.: Numerical methods of higher order accuracy for nonlinear boundary value problems. V. Monotone operator theory. Numer. Math.13, 51–77 (1969)

    Google Scholar 

  4. Feistauer, M.: On irrotational flows through cascades of profiles in a layer of variable thickness, Apl. Mat.29, 423–458 (1984)

    Google Scholar 

  5. Feistauer, M.: Mathematical and numerical study of nonlinear problems in fluid mechanics. In: Proc. Conf. Equadiff 6, Brno 1985. (J. Vosmanský, M. Zlámal, eds.), pp. 3–16 Berlin, Heidelberg: Springer 1986

    Google Scholar 

  6. Feistauer, M.: On the finite element approximation of a cascade flow problem. Numer. Math. (To appear)

  7. Feistauer, M., Felcman, J., Vlášek, Z.: Finite element solution of flows through cascades of profiles in a layer of variable thickness. Apl. Mat.31, 309–339 (1986)

    Google Scholar 

  8. Frehse, J., Rannacher, R.: Optimal uniform convergence for the finite element approximation of a quasilinear elliptic boundary value problem. In: Proc. Symp.: Formulations and Computational Algorithms in Finite Element Analysis. M.I.T. 793–812 (1976)

  9. Frehse, J., Rannacher, R.: AsymptoticL -error estimate for linear finite element approximations of quasilinear boundary value problems. SIAM J. Numer. Anal.15, 418–431 (1978)

    Google Scholar 

  10. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. TATA Inst. of Fund. Research Bombay, Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  11. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Series in Comput. Physics, Berlin, Heidelberg, New York, Tokyo: Springer 1984

    Google Scholar 

  12. Glowinski, R., Marrocco, A.: Analyse numérique du champ magnétique d'un alternateur par éléments finis et surrelaxation punctuelle non linéaire. Comput. Methods Appl. Mech. Eng.3, 55–85 (1974)

    Google Scholar 

  13. Glowinski, R., Marrocco, A.: Sur l'approximation par éléments finis d'ordre un, et la résolution par pénalisation-dualité, d'une classe des problémes de Dirichlet non lináires. RAIRO Anal. Numér.9, R-2, 41–76 (1975)

    Google Scholar 

  14. Melkes, F.: The finite element method for nonlinear problems. Apl. Mat.15, 177–189 (1970)

    Google Scholar 

  15. Nečas, J.: Les Méthodes Directes en Théorie des Equations Elliptiques. Academia, Prague, Masson Paris 1967

    Google Scholar 

  16. Nečas, J.: Introduction to the Theory of Nonlinear Elliptic Equations. Teubner-Texte zur Mathematik, Band52, Leipzig 1983

  17. Noor, M.A., Whiteman, J.R.: Error bounds for finite element solution of mildly nonlinear elliptic boundary value problems. Numer. Math.26, 107–116 (1976)

    Google Scholar 

  18. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press 1970

    Google Scholar 

  19. Strang, G.: Variational crimes in the finite element method. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. (A.K. Aziz, ed.), pp. 689–710. New York: Academic Press 1972

    Google Scholar 

  20. Strang, G., Fix, G.: An Analysis of the Finite Element Method. Englewood Cliffs: Prentice-Hall 1973

    Google Scholar 

  21. Ženíŝek, A.: Curved triangular finiteC m-elements. Apl. Mat.,23, 346–377 (1978)

    Google Scholar 

  22. Ženíŝek, A.: Nonhomogeneous boundary conditions and curved triangular finite elements. Apl. Mat.26, 121–141 (1981)

    Google Scholar 

  23. Ženíŝek, A.: Discrete forms of Friedrichs' inequalities in the finite element method. RAIRO Numer. Anal.15, 265–286 (1981)

    Google Scholar 

  24. Ženíŝek, A.: How to avoid the use of Green's theorem in the Ciarlet's and Raviart's theory of variational crimes. M2AN (to appear)

  25. Zlámal, M.: Curved elements in the finite element method. I. SIAM J. Numer. Anal.10, 229–240 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feistauer, M., Ženíšek, A. Finite element solution of nonlinear elliptic problems. Numer. Math. 50, 451–475 (1986). https://doi.org/10.1007/BF01396664

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01396664

Subject Classifications

Navigation