Log in

Stability analysis of one-step methods for neutral delay-differential equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

In this paper stability properties of one-step methods for neutral functional-differential equations are investigate. Stability regions are characterized for Runge-Kutta methods with respect to the linear test equation

$$\begin{gathered} y'\left( t \right) = ay\left( t \right) + by\left( {t - \tau } \right) + cy'\left( {t - \tau } \right),t \geqq 0, \hfill \\ y\left( t \right) = g\left( t \right), - \tau \leqq t \leqq 0, \hfill \\ \end{gathered} $$

τ>0, where,a, b, andc are complex parameters. In particular, it is shown that everyA-stable collocation method for ordinary differential equations can be extended to a method for neutrals delay-differential equations with analogous stability properties (the so called NP-stable method). We also investigate how the approximation to the derivative of the solution affects stability properties of numerical methods for neutral equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barwell, V.K.: On the asymptotic behavior of the solution of a differential difference equation. Utilitas Math.6, 189–194 (1974)

    Google Scholar 

  2. Bellen, A.: Constrained mesh methods for functional differential equations. ISNM74, 52–70 (1985)

    Google Scholar 

  3. Grayton, R.K., Wiloughby, R.A.: On the numerical integration of a symmetric system of a difference-differential equations. J. Math. Anal. Appl.18, 182–189 (1967)

    Google Scholar 

  4. Castleton, R.N., Grimm, L.J.: A first order method for differential equations of neutral type. Math. Comput.27, 571–577 (1973)

    Google Scholar 

  5. Cryer, C.W.: Numerical methods for functional-differential equations. In: Delay and functional-differential equations and their applications (K. Schmitt, ed.), pp. 17–101. New York: Academic Press 1972

    Google Scholar 

  6. Dekker, K., Verwer, J.G.: Stability of Runge-Kutta methods for stiff nonlinear differential equations. Amsterdam: North-Holland 1984

    Google Scholar 

  7. Hornung, U.: Euler-Verfahren für neutrale Funktional-Differentialgleichungen. Numer. Math.24, 233–240 (1975)

    Google Scholar 

  8. Jackiewicz, Z.: One-step methods for the numerical solution of Volterra functional-differential equations of neutral type. Applicable Anal.12, 1–11 (1981)

    Google Scholar 

  9. Jackiewicz, Z.: The numerical solution of Volterra functional-differential equations of neutral type. SIAM J. Numer. Anal.18, 615–626, (1981)

    Google Scholar 

  10. Jackiewicz, Z.: Adams methods for neutral functional-differential equations. Numer. Math.39, 221–230 (1982)

    Google Scholar 

  11. Jackiewicz, Z.: One-step methods of any order for neutral functional-differential equations. SIAM J. Numer. Anal.21, 486–511 (1984)

    Google Scholar 

  12. Jackiewicz, Z.: Quasilinear multistep methods and variable-step predictor-corrector methods for neutral functional-differential equations. SIAM. J. Numer. Anal.23, 423–452 (1986)

    Google Scholar 

  13. Jackiewicz, Z.: One-step methods for neutral delay-differential equations with state dependent delays. Numerical Analysis Technical Report 65L05-2. University of Arkansas. Fayetteville 1985

    Google Scholar 

  14. Kamont, Z., Kwapisz, M.: On the Cauchy problem for differential-delay equations in a Banach space. Math. Nachr.74, 173–190 (1976)

    Google Scholar 

  15. Kappel, F., Kunisch, K.: Spline approximations for neutral functional-differential equations. SIAM J. Numer. Anal.18, 1058–1080, (1981)

    Google Scholar 

  16. Miranker, W.L.: Existence, uniqueness, and stability of solutions of systems of nonlinear difference-differential equations. J. Math. Mach.11, 101–108 (1962)

    Google Scholar 

  17. Pouzet, P.: Méthode d'intégration numérique des équations intégrales et intégro-différentielles du type Volterra de seconde expéce. Formules de Runge-Kutta. In: Symposium on the numerical treatment of ordinary differential equations, integral and integro-differential equations (Rome 1960), pp. 362–368. Basel: Birkhäuser 1960

    Google Scholar 

  18. Zennaro, M.: Natural continous extensions of Runge-Kutta methods. Math. Comput.46, 119–133 (1986)

    Google Scholar 

  19. Zennaro, M.:P-stability properties of Runge-Kutta methods for delay-differetial equations. Numer. Math.49, 305–318 (1986)

    Google Scholar 

  20. Zverkina, T.S.: A modification of finite difference methods for integrating ordinary differential equations with nonsmooth solutions (in Russian). Z. Vycisl. Mat.i Mat. Fiz. [Suppl.],4, 149–160 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work was supported by the Italian Government from M.P.I. funds, 40%

The work was partially supported by Consiglio Nazionale dell Ricerche and by the National Science Foundation under grant NSF DMS-852090

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellen, A., Jackiewicz, Z. & Zennaro, M. Stability analysis of one-step methods for neutral delay-differential equations. Numer. Math. 52, 605–619 (1988). https://doi.org/10.1007/BF01395814

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01395814

Subject Classifications

Navigation