Log in

Structure and function of the fused rhabdom

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

This paper considers the functional significance of fused rhabdoms. Since all rhabdomeres are joined tightly together, the possibility of optical and electrical coupling between retinula cells is greatly enhanced. We study the extent and consequences of this coupling in order to understand the functional significance of fused rhabdoms. Our methods include both theory and intracellular recordings. The results are as follows:

Optical Coupling. Because rhabdomeres of different spectral types are fused into a common light guide, the absorption properties of each influence the manner in which light is transmitted along the composite rhabdom structure.

  1. 1.

    Each rhabdomere acts as if it were an absorption filter in front of all others, i.e. rhabdomeres function as lateral absorption filters (Fig. 4).

  2. 2.

    As a consequence of this filtering, the shape of the spectral sensitivity curve for each retinula cell is approximately independent of the amount of light it absorbs, i.e. independent of the rhabdomere's length and concentration of photopigment (Fig. 7). This is in direct contrast to the retinula cells of fly that have spectral sensitivity curves which become progressively flatter as more light is absorbed (Snyder and Pask, 1973). In other words, the flattening of curves by self absorption is prevented by optical coupling.

  3. 3.

    Thus, one functional advantage of the fused rhabdom (due to optical coupling) is that each retinula cell can have a high absolute sensitivity while preserving its spectral identity (narrow spectral sensitivity curves). (Compare Fig. 5 to Fig. 6.) Thus the same receptors can operate in a high sensitivity and in a colour vision system (cf. vertebrate rods and cones).Since all spectral cell types are together in one rhabdom, the animal can have hue discrimination in a small field of view (fine grain colour vision). Thus an individual ommatidium has the potential for providing excellent spectral discrimination.

  4. 4.

    If two cells have photopigments with absorption maxima close together, the maxima of their spectral sensitivity curves are moved further apart (Fig. 8).

  5. 5.

    In the absence of electrical coupling polarization sensitivity (PS) can depend dramatically on wavelength. The spectral composition of the rhabdom, in addition to the direction of the microvilli, profoundly influences the polarization sensitivity vs. wavelength PS (λ) curves of individual retinula cells. This is shown theoretically for the worker bee rhabdom (Fig. 10) where (a) there is a pronounced difference in PS (λ) between cells with orthogonal microvilli and (b) green retinula cells show a large PS in the green while the UV cells show a much smaller PS in the UV (Fig. 13).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Autrum, H., Zwehl, V. von: Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. vergl. Physiol.48, 357–384 (1964)

    Google Scholar 

  • Bullock, T. H., Horridge, G. A.: Structure and function in the nervous systems of invertebrates, vol. I and II. San Francisco-London: W. H. Freeman & Co. 1965

    Google Scholar 

  • Burkhardt, D.: Colour discrimination in insects. Advanc. Insect Physiol.2, 131–174 (1964)

    Google Scholar 

  • Butler, R.: The identification and map** of spectral cell types in the retina ofPeriplaneta america. Z. vergl. Physiol.72, 67–80 (1971)

    Google Scholar 

  • Dartnall, H. J. A.: The interpretation of spectral sensitivity curves. Brit. med. Bull.9, 24–30 (1953)

    Google Scholar 

  • Dartnall, H. J. A.: Photosensitivity. In: Handbook of sensory physiology, vol. VII/1. Photochemistry of vision, ed. H. J. A. Dartnall. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Eakin, R. M.: Evolution of photoreceptors. Evol. Biol.2, 194–242 (1968)

    Google Scholar 

  • Eakin, R. M.: Structure of invertebrate photoreceptors. In: Handbook of sensory physiology, ed. Dartnall, H. J. A., ch. 16. Berlin-Heidelberg-New York: Springer 1972 Vol. VII/1

    Google Scholar 

  • Eguchi, E.: Fine structure and spectral sensitivities of retinula cells in the dorsal sector of compound eyes in the dragonflyAeschna. Z vergl. Physiol.71, 201–208 (1971)

    Google Scholar 

  • Eguchi, E., Waterman, T. H., Akiyama, J.: Cellular basis of wavelength discrimination in the crayfishProcambarus. Amer. Zool.12, 252 (1972)

    Google Scholar 

  • Frisch, K. von: The dance, language and orientation of bees. Cambridge, Mass.: Harvard University Press 1967

    Google Scholar 

  • Furshpan, E. J., Potter, D. D.: Transmission at the giant motor synapses of the crayfish. J. Physiol. (Lond.)145, 289–325 (1959)

    Google Scholar 

  • Gribakin, F. G.: Types of photoreceptor cells in the compound eye of the worker honey bee relative to their spectral sensitivity. Cytologia11, 309–314 (1969)

    Google Scholar 

  • Gribakin, F. G.: The distribution of the long wave photoreceptors in the compound eye of the honey bee as revealed by selective osmic staining. Vision Res.12, 1225–1230 (1972)

    Google Scholar 

  • Grundler, O. J.: Morphologische Untersuchungen am Bienenauge nach Bestrahlung mit Licht verschiedener Wellenlängen. Cytobiol.7, 105–110 (1973)

    Google Scholar 

  • Hamdorf, K., Höglund, G., Langer, H.: Mikrophotometrische Untersuchungen an der Retinula des NachtschmetterlingsDeilephila elpenor. Verh. dtsch. zool. Ges.65, 276–280 (1972)

    Google Scholar 

  • Helversen, O. von: Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J. comp. Physiol.80, 439–472 (1972)

    Google Scholar 

  • Horridge, G. A.: Unit studies on the retina of dragonflies. Z. vergl. Physiol.62, 1–37 (1969)

    Google Scholar 

  • Horridge, G. A.: Optical mechanism of clear zone eyes. In: The compound eye and vision of insects, ed. G. A. Horridge. In press (1973)

  • Kirschfeld, K.: The visual system ofMusca: Studies on optics, structure and function. Information Processing in the Visual Systems of Arthropods, ed. R. Wehner, p. 61–74. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Laughlin, S. B.: Neural integration in the first optic neuropile of dragonflies: I. Signal amplification in a dark-adapted second order neuron. J. comp. Physiol.84, 338–358 (1973)

    Google Scholar 

  • Locket, N. A.: Deep sea fish retinas. Brit. med. Bull.26, 107–111 (1970)

    Google Scholar 

  • Menzel, R.: The fine structure of the compound eye ofFormica polyctena-Functional morphology of a hymenopteran eye. In: Information processing in the visual systems of arthropods, ed. R. Wehner, p. 37–49. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Menzel, R.: Colour receptors in insects. In: The compound eye and vision of insects, ed. G. A. Horridge Oxford: University Press. In press (1973)

    Google Scholar 

  • Miller, W. H., Snyder, A. W.: Optical function of human peripheral cones. In Press Vision Res. (1973)

  • Mote, M. I., Goldsmith, T. H.: Compound eyes: Localisation of two color receptors in the same ommatidium. Science171, 1254–1255 (1971)

    Google Scholar 

  • Ninomiya, N., Tominaga, Y., Kuwabara, M.: The fine structure of the compound eye of a damsel-fly. Z. Zellforsch.98, 17–32 (1969)

    Google Scholar 

  • Perrelet, A.: The fine structure of the retina of the honey bee drone. An electron microscopical study. Z. Zellforsch.108, 530–562 (1970)

    Google Scholar 

  • Perrelet, A., Baumann, F.: Evidence for extracellular space in the rhabdome of the honey bee drone eye. J. Cell Biol.40, 825–830 (1969)

    Google Scholar 

  • Scholes, J. H.: Discontinuity of the excitation process in locust visual cells. Cold Spr. Harb. Symp. quant. Biol.30, 517–527 (1965)

    Google Scholar 

  • Shaw, S. R.: Interreceptor coupling in ommatidia of drone honey bee and locust compound eyes. Vision Res.9, 999–1030 (1969a)

    Google Scholar 

  • Shaw, S. R.: Sense-cell structure and interspecies comparisons of polarized-light absorption in arthropod compound eye. Vision Res.9, 1031–1040 (1969b)

    Google Scholar 

  • Snyder, A. W.: Polarization sensitivity of individual retinula cells. J. comp. Physiol.83, 331–360 (1973a)

    Google Scholar 

  • Snyder, A. W.: Optical properties of invertebrate photoreceptors. In: The compound eye and vision of insects, ed. G. A. Horridge. Oxford: University Press. In press 1973b

    Google Scholar 

  • Snyder, A. W., Pask, C.: Spectral sensitivity of dipteran retinula cells. J. comp. Physiol.84, 59–76 (1973)

    Google Scholar 

  • Wald, G., Brown, P. K., Gibbons, I. R.: The problem of visual excitation. J. Opt. Soc. Am.53, 20–35 (1963)

    Google Scholar 

  • Walcott, B.: Unit studies on receptor movements in the retina ofLethocerus (Belostomatidae, Hemiptera). Z. vergl. Physiol.74, 17–25 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, A.W., Menzel, R. & Laughlin, S.B. Structure and function of the fused rhabdom. J. Comp. Physiol. 87, 99–135 (1973). https://doi.org/10.1007/BF01352157

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01352157

Keywords

Navigation