Log in

Comparative ultrastructure of the cuticle of some pelagic, nektobenthic and benthic malacostracan crustaceans

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The ultrastructure of malacostracan integument was examined and compared in 11 species collected primarily from the western Baltic Sea in 1989, of which eight species were studied for the first time (indicated below by an asterisk). We attempted to relate cuticle structure and thickness to swimming aptitude. The pelagic euphausiidMeganyctiphanes norvegia and the mysidsPraunus flexuosus * andNeomysis integer * displayed a thin, little-mineralized, and thus light-weight cuticle. Laminae of the endocuticle were very thin (0.1µm) relative to those of the exocuticle (1µm). In contrast, laminae in the procuticles of the benthic amphipodsGammarus locusta, Caprella linearis *,Corophium volutator *,Orchestia gammarellus *, and the isopodIdotea baltica were evenly distributed, comparatively thick (1 to 2µm), and more heavily mineralized. The nektobenthic amphipodHyperia galba *, the cumaceanDiastylis rathkei * and the decapodCrangon crangon * migrate between pelagic and benthic regions. Only near the hypodermis did these organisms exhibit the characteristically pelagic fine-layered endocuticle. A membranous layer was lacking in all species investigated. In contrast to the less-mineralized cuticles of the species analyzed here, a membranous layer appears to be restricted to crustaceans with heavily calcified shells. Ultrastructural results were substantiated by morphometric calculations, which indicated differences in thickness of the total cuticle relative to body volume. In the pelagic malacostracans, thickness of the cuticle did not increase with body volume over the size range investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Arsenault, A. L., Castell, J. D., Ottensmeyer, F. P. (1984). The dynamics of exosceletal-epidermal structure during molt in juvenile lobster by electron microscopy and electron spectroscopic imaging. Tissue Cell 16: 93–106

    Google Scholar 

  • Bate, R. H., East, B. A. (1972). The structure of the ostracode carapace. Lethaia 5: 177–194

    Google Scholar 

  • Bouligand, Y. (1971). Les orientations fibrillaires dans le squélette des arthropodes. J. Microscopie 11: 441–472

    Google Scholar 

  • Buchholz, C., Buchholz, F. (1989). Ultrastructure of the integument of a pelagic Crustacean: moult cycle related studies on the Antarctic krill,Euphausia superba. Mar. Biol. 101: 355–365

    Google Scholar 

  • Buchholz, C., Pehlemann, F.-W., Sprang, R. R. (1989). The cuticle of krill (Euphausia superba) in comparison to that of other crustaceans. Pesquisa Antárctica Brasiliera 1: 103–111

    Google Scholar 

  • Buchholz, F. (1982). Drach's molt staging system adapted for euphausiids. Mar. Biol. 66: 301–305

    Google Scholar 

  • Buchholz, F. (1991). Moult cycle and growth of Antarctic krillEuphausia superba in the laboratory. Mar. Ecol. Prog. Ser. 69: 217–229

    Google Scholar 

  • Buchholz, F., Boysen-Ennen, E. (1988).Meganyctiphanes norvegica (Crustacea: Euphausiacea) in the Kattegat: studies on the horizontal distribution in relation to hydrography and zooplankton. Ophelia 29: 71–82

    Google Scholar 

  • Cameron, J. N. (1985). Die Häutung der Blauen Krabbe. Spektrum Wiss. 7: 106–116

    Google Scholar 

  • Clauß, G., Ebener, H. (1972). Grundlagen der Statistik. Verlag Harri Deutsch, Frankfurt am Main and Zürich

    Google Scholar 

  • Cuzin-Roudy, J., Tchernigovtzeff, C. (1985). Chronology of the female molt cycle inSiriella armata M. Edw. (Crustacea: Mysidacea) based on marsupial development. J. Crustacean Biol. (Lawrence, Kansas) 5: 1–14

    Google Scholar 

  • Dahl, E. (1977). The amphipod functional model and its bearing upon systematics and phylogeny. Zool. Scr. 6: 221–228

    Google Scholar 

  • Dennell, R. (1947). The occurrence and significance of phenolic hardening in the newly formed cuticle of Crustacea Decapoda. Proc. R. Soc. (Ser. B) 134: 485–503

    Google Scholar 

  • Dittrich, B. (1988). Studies on the life cycle and reproduction of the parasitic amphipodHyperia galba in the North Sea. Helgoländer Meeresunters. 42: 79–98

    Google Scholar 

  • Drach, P. (1939). Mue et cycle d'intermue chez les crustacés décapodes. Annls Inst. océanogr., Monaco 19: 103–391

    Google Scholar 

  • Duncan, D. B. (1970). Multiple comparison methods for comparing regression coefficients. Biometrics 26: 141–143

    Google Scholar 

  • Gessner, F. (1957). Meer und Strand. VEB Deutscher Verlag der Wissenschaften, Berlin

    Google Scholar 

  • Gharagozlou-van Ginneken, I. D., Bouligand, Y. (1975). Studies on the Fine Structure of the Cuticle ofPorcellidium, Crustacea Copepoda. Cell Tissue Res. 159: 399–412

    Google Scholar 

  • Goffinet, G., Compere, P. (1986). Pore canals and ultrastructural organization of chitinoproteins in calcified and non calcified layers of the cuticle of the crabCarcinus maenas. In: Muzzarelli, R., Jeuniaux, C., Gooday, G. W. (eds.) Proceedings of the Third International Conference on Chitin and Chitosan, Senigallia, Italy. Plenum Press, London and New York, p. 37–43

    Google Scholar 

  • Green, J. (1968). The biology of estuarine animals. Sidgwick and Jackson, London

    Google Scholar 

  • Green, J. P., Neff, M. R. (1972). A survey of the fine structure of the integument of the fiddler crab. Tissue Cell 4: 137–171

    Google Scholar 

  • Habermehl, M., Jarre, A., Adelung, D. (1990). Field and laboratory studies on the vertical migration ofDiastylis rathkei (Crustacea Cumacea) in Kiel Bay, Western Baltic. Meeresforsch. Rep. mar. Res. 32: 295–305 (Ber. dt. wiss. Kommn. Meeresforsch.)

    Google Scholar 

  • Hackman, R. H. (1971). The integument of Arthropoda. In: Florkin, M., Scheer, B. T. (eds.) Chemical zoology, Vol. VI. Academic Press, New York and London, p. 1–62

    Google Scholar 

  • Hackman, R. H. (1984). Cuticle: Biochemistry. In: Bereiter-Hahn, J., Matoltsy, A. G., Richards, K. S. (eds.) Biology of the integument. 1. Invertebrates. Springer-Verlag, Berlin, p. 583–610

    Google Scholar 

  • Hadley, N. F. (1986). Die Cuticula der Gliederfüsser. Spektrum Wiss. 9: 98–107

    Google Scholar 

  • Hagerman, L. (1970). Locomotory activity patterns ofCrangon vulgaris (Fabr.) (Crustacea, Natantia). Ophelia 8: 255–266

    Google Scholar 

  • Halcrow, K. (1976). The fine structure of the carapace integument ofDaphnia magna Straus (Crustacea Branchiopoda). Cell Tissue Res. 169: 267–276

    Google Scholar 

  • Halcrow, K. (1978). Modified pore canals in the cuticle ofGammarus (Crustacea: Amphipoda); a study by scanning and transmission electron microscopy. Tissue Cell 10: 659–670

    Google Scholar 

  • Hegdahl, T., Silness, J., Gustavsen, F. (1977). The structure and mineralization of the carapace of the crab (Cancer pagurus L.). 1. The endocuticle. Zool. Scr. 6: 89–99

    Google Scholar 

  • Icely, J. D., Nott, J. A. (1985). Feeding and digestion inCorophium volutator (Crustacea: Amphipoda). Mar. Biol. 89: 183–195

    Google Scholar 

  • Karnovsky, M. J. (1965). A formaldehyde-glutaraladehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27: 137A-138A

    Google Scholar 

  • Keller, R., Adelung, D. (1970). Vergleichende morphologische und physiologische Untersuchungen des Integumentgewebes und des Häutungshormongehaltes beim FlußkrebsOrconectes limosus während eines Häutungszyklus. Wilhelm Roux Arch. Entw. Mech. Org. 164: 209–221

    Google Scholar 

  • Neville, A. C. (1975). Biology of the arthropod cuticle. Springer-Verlag, Berlin

    Google Scholar 

  • Okada, Y. (1982). Structure and cuticle formation of the reticulated carapace of the ostracodeBicornucythere bisanensis. Lethaia 15: 85–101

    Google Scholar 

  • Pérès, J. M. (1982). Structure and dynamics of assemblages in the benthal. In: Kinne, O. (ed.) Marine ecology, Vol. V, Ocean management, Part 1. Wiley Interscience, London, p. 119–185

    Google Scholar 

  • Powell, C. V. L., Halcrow, K. (1984). The formation of surface microscales inIdotea baltica (Pallas) (Crustacea: Isopoda). Can. J. Zool. 62: 567–572

    Google Scholar 

  • Powell, C. V. L., Halcrow, K. (1985). Formation of the epicuticle in a marine isopod,Idotea baltica (Pallas). J. Crustacean Biol. (Lawrence, Kansas) 5: 439–448

    Google Scholar 

  • Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17: 208–212

    Google Scholar 

  • Richards, A. G. (1951). The integument of arthropods. University of Minnesota Press, Minneapolis, Minnesota

    Google Scholar 

  • Richardson, K. C., Jarret, J., Finke, E. H. (1960). Embedding in epoxy resins for ultralthin sectioning in electron microscopy. Stain Technol. 35: 313–323

    Google Scholar 

  • Sarda, F. (1981). Nota sobre la estructura general de la cuticula deNephrops norvegicus (L.) (Crustacea: Decapoda). Investigación pesq. 45: 135–141

    Google Scholar 

  • Schultz, T. M., Kennedy, J. R. (1977). Analysis of the integument and muscle attachments inDaphnia pulex (Cladocera: Crustacea). J. submicrosc. Cytol. 9: 37–51

    Google Scholar 

  • Skinner, D. M. (1962). The structure and metabolism of a crustacean integumentary tissue during a molt cycle. Biol. Bull. mar. biol. Lab., Woods Hole 123: 635–647

    Google Scholar 

  • Sokal, R., Rohlf, F. (1969). Biometry W. H. Freeman & Co., San Francisco

  • Stevenson, J. R. (1985). Dynamics of the integument. In: Bliss, D. E., Mantel, L. H. (eds.) The biology of Crustacea. Academic Press, London, p. 2–42

    Google Scholar 

  • Travis, D. F. (1965). The deposition of skeletal structures in the Crustacea. Acta histochem. 20: 193–222

    Google Scholar 

  • Vallabahn, D. L. (1982). Structure and chemical composition of the cuticle ofCirolana fluviatilis, Sphaeroma walkeri andSphaeroma terebrans. Proc. Indian Acad. Sci. (Sect. B) 91: 57–66

    Google Scholar 

  • Vogel, F. (1985). The swimming of the Talitridae (Crustacea, Amphipoda): functional morphology, phenomenology, and energetics. Helgoländer Meeresunters. 39: 303–339

    Google Scholar 

  • Voss-Foucart, M.-F., Jeuniaux, C. (1978). Etude comparée de la couche principale et de la couche membraneuse de la cuticle chez six especes de Crustacés Décapodes. Archs Zool. exp. gén. 119: 127–142

    Google Scholar 

  • Welinder, B. S. (1975). The crustacean cuticle. III. Composition of the individual layers inCancer pagurus cuticle. Comp. Biochem. Physiol. 52A: 659–663

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pütz, K., Buchholz, F. Comparative ultrastructure of the cuticle of some pelagic, nektobenthic and benthic malacostracan crustaceans. Mar. Biol. 110, 49–58 (1991). https://doi.org/10.1007/BF01313091

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313091

Keywords

Navigation