Log in

Somatostatin-like immunoreactivity, its molecular forms and monoaminergic metabolites in aged and demented patients with Parkinson's disease — effect of L-Dopa

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

There is some evidence that Parkinson's disease (PD) seems to be a heterogenous and generalized brain disorder reflecting a degeneration of multiple neuronal networks, including somatostatinergic neurons.

Somatostatin-like immunoreactivity (SLI) and its molecular forms, high molecular weight form (HMV-SST), somatostatin-14 (SST-14), somatostatin-25/28 (SST-25/28) and Des-ala-somatostatin (Des-ala-SST), as well as homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) were estimated using HPLC and radioimmunoassay in the cerebrospinal fluid (CSF) of 35 aged parkinsonian patients with different stages of intellectual deterioration. The influence of L-dopa-treatment on these neurochemical parameters was evaluated. Without a correlation with dementia scores (p=0.11), SLI was significantly reduced in PD in comparison to the control group (p < 0.05). The reduction was related to the progression of the disease. Correlations between SLI, HVA and 5-HIAA indicate a heterogenous brain disorder in PD with alterations of several transmitter systems and functions. Complex qualitative and quantitative changes in the molecular pattern of SLI are compatible with a dysregulated synthesis and/or posttranslational processing. L-dopa-treatment was associated with a significant increase of HVA (p < 0.05) and HMV-SST (p < 0.05) and a slight, but insignificant increase of SLI (p=0.11).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asanuma M, Ogawa N, Sora YH, Pongdhana K, Haba K, Mori A (1990) Alterations of somatostatin and its modulation by levodopa in MPTP-treated mouse brain. J Neurol Sci 100: 155–160

    PubMed  Google Scholar 

  • Bartfai T (1985) Presynaptic aspects of the coexistence of classical neurotransmitters and peptides. Trends Pharmacol Sci 6: 331–334

    Google Scholar 

  • Beal MF, Martin J (1984) The effect of somatostatin on striatal catecholamines. Neurosci Lett 44: 271–276

    PubMed  Google Scholar 

  • Beal MF, Mazurek MF, Martin JB (1986) Somatostatin immunoreactivity is reduced in Parkinson's disease dementia with Alzheimer's changes. Brain Res 397: 386–388

    PubMed  Google Scholar 

  • Beal MF, Mazurek MF, McBlack PL, Martin JB (1985) Human cerebrospinal fluid somatostatin in neurologic disease. J Neurol Sci 71: 91–104

    PubMed  Google Scholar 

  • Campell MJ, Lewis DA, Benoit R, Morrison JH (1987) Regional heterogeneity in the distribution of somatostatin-28 and somatostatin 28 (1-12) immunoreactive profiles in the monkey neocortex. J Neurosci 7(4): 1133–1144

    PubMed  Google Scholar 

  • Chesselet MF, Reisine TP (1983) Somatostatin regulates dopamine release in rat striatal slices and cat caudate nuclei. Neuroscience 3: 332–336

    PubMed  Google Scholar 

  • Cuadra G, Summers K, Giacobini E (1994) Cholinesterase inhibitor effects on neurotransmitter in rat cortex in vivo. J Pharmacol Exp Ther 270: 277–284

    PubMed  Google Scholar 

  • Cutler NR, Haxby JV, Narang PK, May C, Burg C, Reines SA (1984) Evaluation of an analogue of somatostatin (L363, 586) in Alzheimer's disease. N Engl J Med 312: 725

    Google Scholar 

  • Davies P, Katzman R, Terry RD (1980) Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer's disease and Alzheimer senile dementia. Nature 288: 279–280

    PubMed  Google Scholar 

  • Davies P, Terry RD (1981) Cortical somatostatin-like immunoreactivity in cases of Alzheimer's disease and senile dementia of the Alzheimer's type. Neurobiol Aging 2: 9–14

    PubMed  Google Scholar 

  • Dournaud P, Cervera-Pierot P, Hirsch E, Javoy-Agid F, Kordon C, Agid Y, Epelbaum J (1994) Somatostatin messenger RNA-containing neurons in Alzheimer's disease: an in situ hybridization study in hippocampus, parahippocampal cortex and frontal cortex. Neuroscience 61: 755–764

    PubMed  Google Scholar 

  • Dupont D, Hansen AP, Juul-Jensen P (1978) Somatostatin in the treatment of patients with extrapyramidal disorders and patients with EEG abnormalities. Acta Neurol Scand 57: 488–493

    PubMed  Google Scholar 

  • Dupont E, Christensen SE, Hansen AP, Olivarius BF, Orskov H (1982) Low cerebrospinal fluid in Parkinson's disease. Neurology 32: 312–314

    PubMed  Google Scholar 

  • Edvinsson L, Minthon L, Ekman R, Gustafson L (1993) Neuropeptides in cerebrospinal fluid of patients with Alzheimer's disease and dementia with frontotemporal lobe degeneration. Dementia 4: 167–171

    PubMed  Google Scholar 

  • Epelbaum J, Ruberg M, Moyse E, Javoy-Agid F, Dubois B, Agid Y (1983) Somatostatin and dementia in Parkinson's disease. Brain Res 278: 376–379

    PubMed  Google Scholar 

  • Folstein MF, Folstein SE, MeHugh PR (1975) Mini Mental State: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12: 189–198

    PubMed  Google Scholar 

  • Finali G, Piccirilli M, Piccinin GL (1994) Neuropsychological correlates of L-deprenyl therapy in idiopathic parkinsonism. Prog Neuropsychopharmacol Biol Psychiatry 18: 115–128

    PubMed  Google Scholar 

  • Fuxe K, Agnati LF, Benfenati F (1983) Evidence for the existence of receptor — receptor interactions in the central nervous system: studies on the regulation of monoamine receptors in neuropeptides. J Neural Transm 18 [Suppl]: 165–179

    Google Scholar 

  • Gaykema RP, Gaal G, Traber J, Hersh LB, Luiten PG (1991) The basal forebrain cholinergic system: efferent and afferent connectivity and long-term effects of lesions. Acta Psychiatr Scand 366: 14–26

    Google Scholar 

  • Gottfries CG, Adolfsson R, Aquilonius SM, Carlsson A, Eckernäs SA, Nordberg A, Oreland L, Svennerholm L, Wiberg A, Winblad B (1983) Biochemical changes in dementia disorders of Alzheimer type. Neurobiol Aging 4: 261–271

    PubMed  Google Scholar 

  • Griffiths PD, Perry RA, Crossman AR (1994) A detailed anatomical analysis of neurotransmitter receptors in the putamen and caudate in Parkinson's disease and Alzheimer's disease. Neurosci Lett 169: 68–72

    PubMed  Google Scholar 

  • Ham J, Duberley R, Rickards C, Scanion MF (1993) Differential responses of rat cerebral somatostatinergic and cholinergic cells to glutamate agonists. Mol Chem Neuropathol 19: 107–120

    PubMed  Google Scholar 

  • Hartikainen P, Reinikainen KJ, Soininen H, Sirvio J, Soikkeli R, Riekkinen PJ (1992) Neurochemical markers in the cerebrospinal fluid of patients with Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. J Neural Transm [PD Sect] 4: 53–68

    Google Scholar 

  • Herregodts P, Bruyland M, De Keyser J, Solheid C, Michotte Y, Ebinger G (1989) Monoaminergic neurotransmitter in Alzheimer disease. J Neurol Sci 92: 101–116

    PubMed  Google Scholar 

  • Hoehn M, Yahr MD (1967) Parkinsonism. Onset, progression and mortality. Neurology 17: 427–444

    PubMed  Google Scholar 

  • Jellinger K (1986) Overview of morphological changes in PD. In: Yahr MD, Bergmann KJ (eds) Advances in neurology, vol 45. Raven Press, New York, pp 457–461

    Google Scholar 

  • Jellinger K (1991) Pathology of Parkinson's disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 14: 153–197

    PubMed  Google Scholar 

  • Jolkkonen J, Soininen H, Halonen T (1986) Somatostatin-like immunoreactivity in the cerebrospinal fluid of patients with Parkinson's disease and its relation to dementia. J Neurol Neurosurg Psychiatry 49: 1374–1377

    PubMed  Google Scholar 

  • Kawakatsu S, Morinobu S, Shinohara M, Totsuka S, Kobashi K (1990) Acetylcholine activities and monoamine metabolites in the cerebrospinal fluid of patients with Alzheimer's disease. Biol Psychiatry 28: 387–400

    PubMed  Google Scholar 

  • Konings CH, Kuiper MA, Mulder C, Calliauer J, Wolters EC (1995) CSF acetylcholinesterase in Parkinson's disease: decreased enzyme activity and immunreactivity in demented patients. Clin Chem Acta 235: 101–105

    Google Scholar 

  • Leake A, Ferrier IN (1993) Alterations in aging and disease. Pathophysiology and potential for clinical intervention. Drugs Aging 3: 408–427

    PubMed  Google Scholar 

  • Leake A, Perry EK, Perry RH, Jabeen S, Fairbairn AF, MeKeith IG, Ferrier IN (1991) Neocortical concentrations of neuropeptides in senile dementia of the Alzheimer type and Lewy body type: comparison with Parkinson's disease and severity correlations. Biol Psychiatry 29: 357–364

    PubMed  Google Scholar 

  • Mahler ME, Cummings JL (1990) Alzheimer disease and the dementia of Parkinson's disease: comparative investigations. Alzheimer Dis Assoc Disord 4: 133–149

    PubMed  Google Scholar 

  • Martignoni E, Bono G, Blandini F, Sinforiani E, Merzo P, Nappi G (1991) Monoamines and related metabolic levels in the cerebrospinal fluid of patients with dementia of Alzheimer type. Influence of treatment with L-deprenyl. J Neural Transm [PD Sect] 15–25

  • Minthon L, Edvinsson L, Ekman R, Gustafson L (1990) Neuropeptide levels in Alzheimer's disease and dementia with frontotemporal degeneration. J Neural Transm [Suppl] 30: 57–67

    Google Scholar 

  • Morrison JH, Rogers J, Scherr S, Benoit R, Bloom FE (1985) Somatostatin immunoreactivity in neuritic plaques of Alzheimer patients. Nature 314: 90–92

    PubMed  Google Scholar 

  • Nemeroff CB, Kizer JS, Reynolds GP, Bisette GP (1989) Neuropeptides in Alzheimer's disease: a post-mortem study. Reg Pept 25: 123–130

    Google Scholar 

  • Procter AW, Francis PT, Stratmann GC, Bowen DM (1992) Serotonergic pathology is not widespread in Alzheimer patients without aggressive symptoms. Neurochem Res 17: 917–922

    PubMed  Google Scholar 

  • Quinn NP, Rossor N, Marsden CD (1986) Dementia and Parkinson's disease — pathological and neurochemical considerations. Br Med Bull 42(1): 86–90

    PubMed  Google Scholar 

  • Reisberg B, Ferris SH, De Leon MJ, Crook T (1982) The global deterioration scale for assessment of primary degenerative dementia. Am J Psychiatry 139: 1136–1139

    PubMed  Google Scholar 

  • Rissler K, Cramer H, Schaudt D, Strubel D, Gattaz WF (1986) Molecular size distribution of somatostatin-like immunoreactivity in the cerebrospinal fluid of patients with degenerative brain disease. Neurosci Res 3: 213–225

    PubMed  Google Scholar 

  • Strittmatter M, Cramer H (1992) Parkinson's disease and dementia: clinical and neurochemical correlations. Neuroreport 3: 413–416

    PubMed  Google Scholar 

  • Unsicker K (1993) The trophic cocktail made by adrenal chromaffin cells. Exp Neurol 123: 167–173

    PubMed  Google Scholar 

  • Vescei L, Widerloev E (1990) Preclinical and clinical studies with somatostatin related to the central nervous system. Prog Neuropsychopharmacol Biol Psychiatry 14: 573–602

    Google Scholar 

  • Vescei L, Widerloev E, Ailing C, Zsigo J, Pavo I, Penke B (1990) Somatostatin-28 (15-28), but not somatostatin-28 (1–12), affects central monoaminergic neurotransmission in rats. Neuropeptides 16(4): 181–186

    PubMed  Google Scholar 

  • Weber SJ, Louis RB, Trombley L, Bisette G, Davies P, Davies TP (1992) Metabolic halflife of somatostatin and peptidase activities are altered in Alzheimer's disease. J Gerontol 47(1): 18–25

    Google Scholar 

  • Whitford CA, Candy JM, Edwardson JA, Perry RH (1988) Cortical somatostatinergic system not affected in Alzheimer's and Parkinson's disease. J Neurol Sci 86: 13–18

    PubMed  Google Scholar 

  • Yoshimura M (1988) Pathological basis for dementia in elderly patients with idiopathic Parkinson's disease. Eur Neurol 28: 29–35

    PubMed  Google Scholar 

  • Zorilla R, Simard J, Rheaume E, Labrie F, Pelletier G (1990) Multihormonal control of pre-pro-somatostatin mRNA levels in the periventricular nucleus of the male and female rat hypothalamus. Neuroendocrinology 52: 527–536

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strittmatter, M., Hamann, G.F., Strubel, D. et al. Somatostatin-like immunoreactivity, its molecular forms and monoaminergic metabolites in aged and demented patients with Parkinson's disease — effect of L-Dopa. J. Neural Transmission 103, 591–602 (1996). https://doi.org/10.1007/BF01273156

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01273156

Keywords

Navigation