Log in

The ergodic theory of shrinking targets

  • Published:
Inventiones mathematicae Aims and scope

Summary

To any dynamical system equipped with a metric, we associate a class of “well approximable” sets. In the case of an expanding rational map of the Riemann sphere acting on its Julia set, we estimate and in some cases compute the Hausdorff dimension of the associated “well approximable” sets. The methods used show a clear link between distortion properties and the type of results obtained in this paper, via ergodic theory and ubiquity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.F. Beardon: Iteration of Rational Functions, Springer GTM 132, (1991)

  2. R. Bowen: Equilibrium States and the Ergodic Theory for Anosov Diffeomorphisms, Springer LNM 470

  3. Brolin: Invariant sets under iteration of rational functions. Ark. Mat.6, 103–44

  4. J.W.S. Cassels: An Introduction to Diophantine Approximation, (C.U.P., 1957)

  5. M. Denker, Grillenberger, Sigmund: Ergodic Theory on Compact Spaces. Springer LNM 527

  6. M. Denker, M. Urbańki: Ergodic theory of equilibrium states of rational maps. Nonlinearity4 (1991) 103–134

    Google Scholar 

  7. M.M. Dodson, M. Melián, D. Pestana, S.L. Velani: Patterson measure and Ubiquity. Mathematica Gottingensis, Heft 3 Jan 1993 (preprint)

  8. M.M. Dodson, B.P. Rynne, J.A.G. Vickers: Diophantine approximation and a lower bound for Hausdorff dimension. Mathematika37 (1990) 59–73

    Google Scholar 

  9. K.J. Falconer: Fractal Geometry-Mathematical Foundations and Applications. J. Wiley, Chichester, 1990

    Google Scholar 

  10. V.L. Garber: On the iteration of rational functions. Math. Proc. Cambridge Philos. Soc.84 (1978) 497–505

    Google Scholar 

  11. E. Hille: Analytic function theory. Ginn and Company: Boston New York Chicago Atlanta Dallas Palo Alto Toronto, 1962

    Google Scholar 

  12. K. Jänich: Topology, Springer, Berlin Heidelberg New York 1980

    Google Scholar 

  13. M.V. Melián, D. Pestana: Geodesic excursions into cusps in finite volume hyperbolic manifolds. Michigan Math. J.40 (1993) 77–93

    Google Scholar 

  14. W. Parry, M. Pollicott: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque Math. Soc. France (1990) 187–188

  15. S.J. Patterson: The limit set of a Fuchsian group. Acta Math.136 (1976) 241–273

    Google Scholar 

  16. K. Peterson: Ergodic Theory. Camb. studies in Advanced Math. 2, C.U.P. (1989)

  17. D. Ruelle: Thermodynamical Formalism. Encycl. Math. Appl. 5 (1978)

  18. V.G. Sprind zuk: Metric theory of Diophantine approximation (translated by R.A. Silverman) V.H. Winston and Sons, Washington D.C. 1979

    Google Scholar 

  19. D. Sullivan: Conformal Dynamical Systems. Proc. Conf on Geometric Dynamics in Rio de Janeiro 1981, Springer LNM 1007, pp. 725–752

  20. D. Sullivan: The density at infinity of a discrete group of hyperbolic motions. Publ. Math. I.H.E.S.50 (1979) 171–202

    Google Scholar 

  21. S.L. Velani: Diophantine approximation and Hausdorff dimension in Fuchsian groups. Math. Proc. Cam. Phil. Soc.113 (1993) 343–354

    Google Scholar 

  22. S.L. Velani: Geometrically finite groups, Khintchine-type theorems and hausdorff dimension. Mathematica Gottingensis (1993) (preprint)

  23. P. Walters: A variational principle for the pressure of continuous transformations. Am. J. Math.97 (1975) 937–971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Oblatum 1-IX-1993 & 2-V-1994

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, R., Velani, S.L. The ergodic theory of shrinking targets. Invent Math 119, 175–198 (1995). https://doi.org/10.1007/BF01245179

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01245179

Keywords

Navigation