Log in

A consistent deduction of von Kármán-type plate theories from three-dimensional nonlinear continuum mechanics

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Classical and refined plate theories derived from linear continuum mechanics lead to correct results only if the transverse deflection of the plate is small compared to its thickness. In the case of large deflections, geometrical nonlinearities have to be incorporated. For the classical Kirchhoff plate theory, a suitable extension for moderate rotations has been presented by von Kármán in 1911.

Starting from the three-dimensional equations of nonlinear continuum mechanics, a family of von Kármán-type plate theories is deduced. For the derivation, the kinematical variables are replaced by a series representation and the principle of virtual displacements is used. It can be shown that most plate theories can be obtained from this type of theory and that the kinematical assumptions must fulfill certain conditions to obtain a solvable system of equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altenbach, J., Altenbach, H.: Einführung in die Kontinuumsmechanik. Stuttgart: Teubner 1994.

    Google Scholar 

  2. Ambarcumyan, S. A.: Theory of anisotropic plates. Moscow: Nauka 1987 (in Russian).

    Google Scholar 

  3. Bhimaraddi, A., Stevens, L. K.: A higher theory for the free vibration of orthotropic, homogeneous and laminated rectangular plates. Transactions of the American Society of Mechanical Engineers. J. Appl. Mech.51, 195–198 (1984).

    Google Scholar 

  4. Ciarlet, P. G.: Plates and junctions in elastic multi-structures: an asymptotic analysis, vol. 14 of Collection Recherches en Mathématiques Appliquées. Masson, 1990.

  5. Hencky, H.: Über die Berücksichtigung der Schubverzerrung in ebenen Platten. Ingenieur-Archiv16, 72–76 (1947).

    Google Scholar 

  6. Heuer, R., Irschik, H., Fotiu, P., Ziegler, F.: Nonlinear flexural vibrations of layered plates. Int. J. Solids and Structures29, 1813–1818 (1992).

    Google Scholar 

  7. Irschik, H.: On vibrations of layered beams and plates. Zeitschrift für angewandte Mathematik und Mechanik,73, T34-T45 (1993).

    Google Scholar 

  8. Khan, A. S., Huang, S.: Continuum Theory of Plasticity. New York: Wiley 1995.

    Google Scholar 

  9. Kirchhoff, G. R.: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Crelles Journal für die reine und angewandte. Mathematik40, 51–88 (1850).

    Google Scholar 

  10. Levinson, M.: An accurate, simple theory of the statics and dynamics of elastic plates. Mechanics Research Communications7 (6), 343–350 (1980).

    Google Scholar 

  11. Lo, K. H., Christensen, R. M., Wu, E. M.: A high-order theory of plate deformation. Part I: Homogeneous plates. Transactions of the American Society of Mechanical Engineers. J. Appl. Mech.44 (4), 663–668 (1977).

    Google Scholar 

  12. Meenen, J.: Tragwerksmodelle für Verbund- und Sandwichstrukturen. Methodik und Bewertung der erweiterten Plattentheorien. Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg, 2000.

  13. Noor, A. K., Burton, W. S.: Assessment of shear deformation theories for multi-layered composite plates. Appl. Mech. Rev.42 (1), 1–13 (1989).

    Google Scholar 

  14. Pagano, N. J.: Exact solutions for composite laminates in cylindrical bending. J. Comp. Mat.3, 398–411 (1969).

    Google Scholar 

  15. Reddy, J. N.: A simple higher-order theory for laminated composite plates. Transactions of the American Society of Mechanical Engineers. J. Appl. Mech.51, 745–752 (1984).

    Google Scholar 

  16. Reddy, J. N.: Mechanics of laminated composite plates: Theory and analysis. CRC Press Boca Raton 1996.

    Google Scholar 

  17. Reissner, E.: On the theory of bending of the elastic plates. J. Math. Physics23, 184–194 (1944).

    Google Scholar 

  18. Reissner, E.: On bending of elastic plates. Quart. Appl. Math.5, 55–68 (1947).

    Google Scholar 

  19. Timoshenko, S.: History of Strength of Materials. New York: McGraw Hill 1953.

    Google Scholar 

  20. von Kármán, T.: Encyklopädie der mathematischen Wissenschaften, vol. IV/2, chap. Festigkeitsprobleme im Maschinenbau, 311–385. Leipzig: Teubner 1911.

    Google Scholar 

  21. Whitney, J. M., Pagano, N. J.: Shear deformation in heterogeneous anisotropic plates. Transactions of the American Society of Mechanical Engineers. J. Appl. Mech.37, 1031–1036 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meenen, J., Altenbach, H. A consistent deduction of von Kármán-type plate theories from three-dimensional nonlinear continuum mechanics. Acta Mechanica 147, 1–17 (2001). https://doi.org/10.1007/BF01182348

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01182348

Keywords

Navigation