Log in

The thermal reactions of montmorillonite studied by high-resolution solid-state29Si and27Al NMR

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Only very slight changes are observed in the29Si and27Al solid-sate magic-angle spinning NMR spectra of a montmorillonite containing almost equal numbers of octahedral aluminium and magnesium ions when its interlayer water is driven off by heating. The29Si NMR spectra are unaffected by dehydroxylation which begins at ∼ 450° C, but the27Al spectra show a decrease in total intensity, possibly due to the formation of 5-coordinated aluminium, with a slight increase in the intensity of the tetrahedral aluminium resonance. On the basis of these results, a structural model is proposed for the dehydroxylate phase and its formation mechanism is discussed. The destruction of the dehydroxylate X-ray pattern at ∼ 850° C and the subsequent recrystallization of the high-temperature products (β-quartz, enstatite and high-cordierite at ∼ 1100° C;β-cristobalite, enstatite and sapphirine at ∼ 1200° C) is accompanied by changes in the silicon and aluminium NMR spectra and in the57Fe Mbssbauer spectra which are fully consistent with the known structural features of these phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Grim andW. F. Bradley,J. Amer. Ceram. Soc. 23 (1940) 242.

    Google Scholar 

  2. R. E. Grim andG. Kulbicki.Amer. Mineral. 46 (1961) 1329.

    Google Scholar 

  3. U. Hofmann, K. Endell andD. Wilm,Z. Krist. 86 (1933) 340.

    Google Scholar 

  4. C. H. Edelman andJ. Ch. L. Favejee,ibid. 102 (1940) 417.

    Google Scholar 

  5. W. F. Bradley andR. E. Grim,Amer. Mineral. 36 (1951) 182.

    Google Scholar 

  6. S. I. Tsipursky andV. A. Drits,Clay Min. 19 (1984) 177.

    Google Scholar 

  7. W. D. Johns andE. C. Johns,J. Geol. 62 (1954) 163.

    Google Scholar 

  8. L. Heller, V. C. Farmer, R. C. MacKenzie, B. D. Mitchell andH. F. W. Taylor,Clay Min. Bull. 5 (1962) 56.

    Google Scholar 

  9. R. Wardle andG. W. Brindley,Amer. Mineral. 57 (1972) 732.

    Google Scholar 

  10. K. J. D. MacKenzie, I. W. M. Brown, R. H. Meinhold andM. E. Bowden,J. Amer. Ceram. Soc. 68 (1985) 266.

    Google Scholar 

  11. L. Heller-Kallai andI. Rozenson,Clays Clay Mins 28 (1980) 355.

    Google Scholar 

  12. I. Rozenson andL. Heller-Kallai,ibid. 28 (1980) 391.

    Google Scholar 

  13. C. M. Cardile andJ. H. Johnston,ibid. 34 (1986) 307.

    Google Scholar 

  14. K. J. D. MacKenzie, I. W. M. Brown, R. H. Meinhold andM. E. Bowden,J. Amer. Ceram. Soc. 68 (1985) 293.

    Google Scholar 

  15. C. S. Ross andS. B. Hendricks, US Geological Survey Professional Paper 205-B (1945) 23–79.

  16. R. Greene-Kelly, in “The Differential Thermal Investigation of Clays”, edited by R. C. MacKenzie (Mineralogical Society, London, 1957) pp. 140–64.

    Google Scholar 

  17. D. McConnell,Amer. Mineral. 35 (1950) 166.

    Google Scholar 

  18. R. H. Meinhold, K. J. D. MacKenzie andI. W. M. Brown,J. Mater. Sci. Lett. 4 (1985) 163.

    Google Scholar 

  19. T. Watanabe, H. Shimizu. A. Masuda andH. Saito,Chem. Lett. (1983) 1293.

  20. K. A. Smith, R. J. Kirkpatrick, E. Oldfield andD. M. Henderson,Amer. Mineral. 68 (1983) 1206.

    Google Scholar 

  21. J. G. Thompson,Clay Min. 19 (1984) 229.

    Google Scholar 

  22. A. Putnis, C. A. Fyfe andG. C. Gobbi,Phys. Chem. Minerals 12 (1985) 211.

    Google Scholar 

  23. S. Motherwell, “PLUTO, A Programme for Plotting Molecular and Crystal Structures” (University Chemical Library, Cambridge, England, 1976).

    Google Scholar 

  24. B. A. Goodman andJ. W. Stucki,Clay Min. 19 (1984) 663.

    Google Scholar 

  25. P. B. Moore,Amer. Mineral. 54 (1969) 31.

    Google Scholar 

  26. S. Merlino,Z. Krist. 151 (1980) 91.

    Google Scholar 

  27. U. Halenius,Can. Mineral. 16 (1978) 567.

    Google Scholar 

  28. E. Kreber, U. Gonser, A. Trautwein andF. E. Harris,J. Phys. Chem. Solids 36 (1975) 263.

    Google Scholar 

  29. G. M. Bancroft, R. G. Burns andA. J. Stone,Geochim. Cosmochim. Acta 32 (1968) 547.

    Google Scholar 

  30. K. J. D. MacKenzie andM. E. Bowden,Thermochim. Acta 64 (1983) 83.

    Google Scholar 

  31. T. V. Malysheva andA. V. Ukhanov,Geochim. Int. 13 (1976) 96.

    Google Scholar 

  32. R. G. Gupta andR. G. Mendiratta,Mineralog. Mag. 43 (1980) 815.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, I.W.M., MacKenzie, K.J.D. & Meinhold, R.H. The thermal reactions of montmorillonite studied by high-resolution solid-state29Si and27Al NMR. J Mater Sci 22, 3265–3275 (1987). https://doi.org/10.1007/BF01161191

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01161191

Keywords

Navigation