Log in

Ocular and systemic bioavailability of ophthalmic flurbiprofen

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Flurbiprofen, a nonsteroidal antiinflammatory agent which is not ocularly metabolized, was employed as a probe compound to investigate the drug kinetic relationship between systemic and ocular humoral circulation. The ocular and systemic bioavailabilities of topically applied flurbiprofen were also quantitated. Anesthetized albino female rabbits received flurbiprofen doses intracamerally, topically, and intravenously at 2 to 4 week intervals. Aqueous humor and plasma were used as the sampling compartments. Plasma clearance values of flurbiprofen were 6.77 and 7.87 ml/min, after 6-mg and 208-μg intravenous doses, respectively. These values were not significantly different and indicated no dose-dependent disposition kinetics over a 30-fold dose range. Both ocular and systemic flurbiprofen dispositions followed a biexponential pattern with a rapid distribution phase. The systemic and ocular distribution half-lives of flurbiprofen were 12 min and 15 min, respectively. The plasma elimination half-life was 74 min and the aqueous humor elimination half-life was 93 min. The latter approximated the turnover rate of aqueous humor and suggested that aqueous humor drainage was the major process of flurbiprofen elimination from the globe. About 99% of flurbiprofen is bound to plasma protein. At distribution equilibrium, the plasma and aqueous humor concentrations of fluobiprofen differed by a hundredfold, suggesting that only free drug entered the aqueous humor after the administration of a systemic dose. In the ophthalmic studies, right eyes were instilled with 50 μl of 0.3% flurbiprofen in saline (dose = 150 μg), and left eyes were instilled with 50 μl of 0.15% flurbiprofen in saline (dose=75 μg). When the area of the aqueous humor concentration-versus-time curve values was normalized by the administered dose, the 75-μg dose was 30% more available to ocular tissues than was the 150-μg dose. This demonstrated a disproportionate relationship between the administered dose and the fraction absorbed. The intracameral dose was considered to be completely bioavailable for intraocular effects. The ocular bioavailability of the ophthalmic dose was defined by using intracameral administration as a standard measurement. The ocular bioavailabilities of the 75-μg and 150-μg topical flurbiprofen doses were 10% and 7%, respectively. Systemic bioavailability after topical administration of 225 μg of flurbiprofen was 74%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Smolen and R. D. Schoenwald. Drug-absorption analysis from pharmacological data. I: Method and confirmation exemplified for the mydriatic drug tropicamide.J. Pharm. Sci. 60:96–103 (1971).

    Article  CAS  PubMed  Google Scholar 

  2. T. J. Mikkelson, S. S. Chrai, and J. R. Robinson. Altered bioavailability of drugs in the eye due to drug-protein interaction.J. Pharm. Sci. 62:1648–1653 (1973).

    Article  CAS  PubMed  Google Scholar 

  3. V. F. Smolen, J. M. Clevender, E. J. Williams, and M. W. Bergdolt. Biophasic availability of ophthalmic carbachol I: Mechanism of cationic polymer and surfactant-promoted miotic activity.J. Pharm. Sci. 62:958–961 (1973).

    Article  CAS  PubMed  Google Scholar 

  4. M. Lee and E. R. Hammarlund. Corneal absorption of ophthalmic drugs.J. Pharm. Sci. 63:721–724 (1974).

    Article  CAS  PubMed  Google Scholar 

  5. H. Benson. Permeability of the cornea to topically applied drugs.Ophthamology 91:313–327 (1974).

    CAS  Google Scholar 

  6. S. S. Chrai and J. R. Robinson. Corneal permeation of topical pilocarpine nitrate in the rabbit.Am. J. Ophthalmol. 77:735–739 (1974).

    Article  CAS  PubMed  Google Scholar 

  7. T. F. Patton and M. Francoeur, Ocular bioavailability and systemic loss of topically applied ophthalmic drugs.Am. J. Ophthalmol. 85:225–229 (1978).

    Article  CAS  PubMed  Google Scholar 

  8. K. J. Himmelstein, I. Guvenir, and T. F. Patton. Preliminary pharmacokinetic model of pilocarpine uptake and distribution in the eye.J. Pharm. Sci. 67:603–608 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. J. W. Shell. Pharmacokinetics of topically applied ophthalmic drugs.Surv. Ophthalmol. 26:207–218 (1982).

    Article  CAS  PubMed  Google Scholar 

  10. H. M. Leibowitz and A. Kupferman. Bioavailability and therapeutic effectiveness of topically administered corticosteroids.Trans. Am. Acad. Ophth. Otol. 79:78–88 (1975).

    Google Scholar 

  11. J. W. Sieg and J. R. Robinson. Vehicle effects on ocular drug bioavailability I: Evaluation of fluorometholone.J. Pharm. Sci. 64:931–936 (1975).

    Article  CAS  PubMed  Google Scholar 

  12. J. W. Sieg and J. R. Robinson. Vehicle effects on ocular drug bioavailability II: Evaluation of pilocarpine.J. Pharm. Sci. 66:1222–1228 (1977).

    Article  CAS  PubMed  Google Scholar 

  13. H. M. Leibowitz, A. R. Berrospi, A. Kupferman, G. V. Restropo, V. Galvis, and J. A. Alvarez. Penetration of topically administered prednisolone acetate into the human aqueous humor.Am. J. Ophthalmol. 83:402–406 (1977).

    Article  CAS  PubMed  Google Scholar 

  14. M. Gibaldi and D. Perrier.Pharmacokinetics, Vol. I. Marcel Dekker, New York, 1975.

    Google Scholar 

  15. J. A. Anderson, C. C. Chen, J. B. Vita, and M. Shackleton. Disposition of topical flurbiprofen in normal and aphakic rabbit eyes.Arch. Ophthalmol. 100:642–645 (1982).

    Article  CAS  PubMed  Google Scholar 

  16. L. Z. Benet and R. L. Galeazzi. Noncompartmental determination of the steady-state volume of distribution.J. Pharm. Sci. 68:1071–1074 (1979).

    Article  CAS  PubMed  Google Scholar 

  17. R. A. Moses (ed.).Adler's Physiology of the Eye, 7th ed. C. V. Mosby, St. Louis, 1981.

    Google Scholar 

  18. J. M. Conrad and J. R. Robinson. Aqueous chamber drug distribution volume measurement in rabbits.J. Pharm. Sci. 66:219–224 (1977).

    Article  CAS  PubMed  Google Scholar 

  19. S. M. Podos and B. Becker. Comparison of ocular prostaglandin synthesis inhibitors.Invest. Ophthalmol. 15:841–844 (1976).

    CAS  PubMed  Google Scholar 

  20. S. M. Podos. Prostaglandins, nonsteroidal anti-inflammatory agents and eye disease.Trans. Am. Ophthal. Soc. 74:637–660 (1977).

    Google Scholar 

  21. S. L. Beal and L. B. Sheiner.NONMEN Users Guide-Part I, Users Basic Guide. Division of Clinical pharmacology, University of California, San Francisco, 1979.

    Google Scholar 

  22. L. B. Sheiner and S. L. Beal. Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis-Menten Model: routine clinical pharmacokinetic data.J. Pharmacokin. Biopharm. 8:553–571 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang-Liu, D.D.S., Liu, S.S. & Weinkam, R.J. Ocular and systemic bioavailability of ophthalmic flurbiprofen. Journal of Pharmacokinetics and Biopharmaceutics 12, 611–626 (1984). https://doi.org/10.1007/BF01059556

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059556

Key words

Navigation