Log in

The limiting dissociative mechanism for substitution at thed 6 centres molybdenum(O), iron(II), and cobalt(III): Kinetics of substitution at the pentacyano-4-Cyanopyridineferrate(II) anion and at 4-cyanopyridinemolybdenum(I) pentacarbonyl

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

Rate constants are reported for reaction of the 4-cyanopyridine complexes [Fe(CN)5(4CNpy)]3− and [Mo(CO)5(4CNpy)] with a variety of incoming ligands, in aqueous methanol (40 vol % MeOH) and in toluene respectively, at 298.2 K (ambient pressure). The dependence of rate constants on the nature and concentration of the incoming ligand is discussed in terms of the operation of the limiting dissociative,D, mechanism for substitution; the operation of this mechanism here, and in analogous pentacyanoferrate(II), pentacarbonylmolybdenum(I), and penta- and tetra-cyanocobaltate(III) complexes is reviewed. The effect of pressure on rate constants for replacement of 4-cyanopyridine in [Mo(CO)5(4CNpy)], in toluene solution at 298.2 K, indicates an activation volume of +3 cm3 mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Langford and H. B. Gray,Ligand Substitution Processes, Benjamin, New York, 1965.

    Google Scholar 

  2. M. L. Tobe,Inorganic Reaction Mechanisms, Nelson, London, 1972, ch. 7; R. G. Wilkins,The Study of Kinetics and Mechanism of Reactions of Transition Metal Complexes, Allyn and Bacon, Boston, 1974, ch. 4.

    Google Scholar 

  3. A. Haim, R. J. Grassi, and W. K. Wilmarth,Adv. Chem. Ser.,49, 31 (1965).

    Google Scholar 

  4. P. H. Tewari, R. W. Gaver, H. K. Wilcox, and W. K. Wilmarth,Inorg. Chem.,6, 611 (1967).

    Google Scholar 

  5. J. Halpern and D. N. Hague,Inorg. Chem.,6, 2059 (1967).

    Google Scholar 

  6. S. C. F. Au-Yeung and D. R. Eaton,Inorg. Chem.,23, 1517 (1984).

    Google Scholar 

  7. B. F. G. Johnson, J. Lewis and M. V. Twigg,J. Chem. Soc., Dalton Trans., 241 (1974).

  8. H.-T. Macholdt and H. Elias,Inorg. Chem.,23, 4315 (1984); H.-T. Macholdt, Ph.D. Thesis, Technische Hochschule Darmstadt, 1984.

    Google Scholar 

  9. A. J. Poë and M. V. Twigg,J. Chem. Soc., Dalton Trans., 1860 (1974).

  10. L. I. B. Haines and A. J. Poë,J. Chem. Soc. (A), 2826 (1969).

  11. M. Basato,J. Chem. Soc., Dalton Trans., 91 (1985).

  12. C. M. Carr, D. M. Davies, M. Gower, L. A. P. Kane-Maguire, and D. A. Sweigart,J. Chem. Soc., Dalton Trans., 923 (1981).

  13. E. B. Fleischer, S. Jacobs, and L. Mestichelli,J. Am. Chem. Soc.,90, 2527 (1968).

    Google Scholar 

  14. Z. Dokuzović, D. Pavlović, S. Ašperger, and I. Murati,J. Chem. Soc., Chem. Commun., 1060 (1984).

  15. E. Antonini and M. Brunori,Haemoglobin and Myoglobin in their Reactions with Ligands, North-Holland Publishing, Amsterdam, 1971.

    Google Scholar 

  16. M. G. Burnett and W. M. Gilfillan,J. Chem. Soc., Dalton Trans., 1578 (1981).

  17. A. Haim,Inorg. Chem.,21, 2887 (1982).

    Google Scholar 

  18. M. H. M. Abou-El-Wafa and M. G. Burnett,J. Chem. Soc., Chem. Commun., 833 (1983).

  19. K. F. Miller and A. D. Wentworth,Inorg. Chem.,15, 1467 (1976).

    Google Scholar 

  20. J. Burgess,Mech. Inorg. Organomet. React.,1, 129 (1983);2, 190 (1984);3, 216 (1985);4, 239 (1986).

    Google Scholar 

  21. M. H. M. Abou-El-Wafa, M. G. Burnett, and J. F. McCullagh,J. Chem. Soc., Dalton Trans., 2083 (1986).

  22. M. G. Burnett,Chem. Soc. Rev.,12, 267 (1983).

    Google Scholar 

  23. W. K. Wilmarth, J. E. Byrd, H. N. Po, H. K. Wilcox, and P. H. Tewari,Coord. Chem. Rev.,51, 181 (1983); W. K. Wilmarth, J. E. Byrd, and H. N. Po,Coord. Chem. Rev.,51, 209 (1983).

    Google Scholar 

  24. M. H. M. Abou-El-Wafa and M. G. Burnett,Polyhedron,3, 895 (1984).

    Google Scholar 

  25. H. E. Toma and J. M. Malin,Inorg. Chem.,12, 1039 (1973).

    Google Scholar 

  26. D. Pavlović, I. Murati, and S. Ašperger,J. Chem. Soc., Dalton Trans., 602 (1973).

  27. H. E. Toma and J. M. Malin,Inorg. Chem.,13, 1772 (1974).

    Google Scholar 

  28. Z. Bradić, D. Pavlović, I. Murati, and S. Ašperger,J. Chem. Soc., Dalton Trans., 344 (1974).

  29. Z. Bradić, M. Pribanić, and S. Ašperger,J. Chem. Soc., Dalton Trans., 353 (1975).

  30. H. E. Toma,J. Inorg. Nucl. Chem.,37, 785 (1975).

    Google Scholar 

  31. M. A. Blesa, J. A. Olabe, and P. J. Aymonino,J. Chem. Soc., Dalton Trans., 1196 (1976).

  32. H. E. Toma, J. M. Malin, and E. Giesbrecht,J. Chem. Soc., Dalton Trans., 1610 (1978).

  33. N. V. Hrepic and J. M. Malin,Inorg. Chem.,18, 409 (1979).

    Google Scholar 

  34. D. H. Macartney and A. McAuley,J. Chem. Soc., Dalton Trans., 1780 (1981).

  35. M. J. Blandamer, J. Burgess, and R. I. Haines,J. Chem. Soc., Dalton Trans., 244 (1978).

  36. T. R. Sullivan, D. R. Stranks, J. Burgess, and R. I. Haines,J. Chem. Soc., Dalton Trans., 1460 (1977).

  37. M. J. Blandamer, J. Burgess, K. W. Morcom, and R. Sherry,Transition Met. Chem.,8, 354 (1983).

    Google Scholar 

  38. H.-T. Macholdt and R. van Eldik,Transition Met. Chem.,10, 323 (1985).

    Google Scholar 

  39. A. L. Coelho, H. E. Toma, and J. M. Malin,Inorg. Chem.,22, 2703 (1985).

    Google Scholar 

  40. J. M. Malin, H. E. Toma, and E. Giesbrecht,J. Chem. Educ.,54, 385 (1977).

    Google Scholar 

  41. J. M. A. Hoddenbagh and D. H. Macartney,Inorg. Chem.,25, 2099 (1986).

    Google Scholar 

  42. M. J. Blandamer, J. Burgess and R. I. Haines,J. Chem. Soc., Dalton Trans., 1293 (1976); M.-L. Moran, F. Sanchez, and J. Burgess, unpublished work; J. Salas, M. Katz, and N. E. Katz,J. Sol. Chem.,12, 115 (1983).

  43. G. C. Pedrosa, J. A. Salas, M. Katz, and N. E. Katz,J. Coord. Chem.,12, 145 (1983).

    Google Scholar 

  44. G. C. Pedrosa, N. L. Hernandez, N. E. Katz, and M. Katz,J. Chem. Soc., Dalton Trans., 2297 (1980).

  45. D. H. Macartney and A. McAuley,Inorg. Chem.,18, 2891 (1979).

    Google Scholar 

  46. M. J. Schadt and A. J. Lees,Inorg. Chem.,25, 672 (1986).

    Google Scholar 

  47. L. H. Staal, D. J. Stufkens, and A. Oskam,Inorg. Chim. Acta,26, 255 (1978).

    Google Scholar 

  48. J. Burgess, J. G. Chambers, and R. I. Haines,Transition Met. Chem.,6, 145 (1981); R. bin Ali, J. Burgess, M. Kotowski, and R. van Eldik,Transition Met. Chem., accepted for publication (TMC 1645).

    Google Scholar 

  49. W. D. Cowey and T. L. Brown,Inorg. Chem.,12, 2820 (1973).

    Google Scholar 

  50. G. Schmidt, Diplomarbeit, Technische Hochschule Darmstadt, 1985.

  51. R. Romeo, personal communication.

  52. M. H. M. Abou-El-Wafa and M. G. Burnett,Inorg. Chim. Acta,86, L7 (1984).

    Google Scholar 

  53. R. Romeo, D. Minniti, and S. Lanza,Inorg. Chem.,19, 3663 (1980); and refs therein.

    Google Scholar 

  54. J. A. S. Howell, personal communication.

  55. J. Burgess and A. E. Smith,Transition Met. Chem.,12, 140 (1987).

    Google Scholar 

  56. H. Daamen, H. van der Poel, D. J. Stufkens, and A. Oskam,Thermochim. Acta,34, 69 (1979); K. E. Lewis, D. M. Golden, and G. P. Smith,J. Am. Chem. Soc.,106, 3905 (1984).

    Google Scholar 

  57. D. J. Kenney, T. P. Flynn, and J. B. Gallini,J. Inorg. Nucl. Chem.,20, 75 (1961).

    Google Scholar 

  58. A. J. Lees and A. W. Adamson,J. Am. Chem. Soc.,104, 3804 (1982); S. Chun, E. E. Getty, and A. J. Lees,Inorg. Chem.,23, 2155 (1984).

    Google Scholar 

  59. H. V. Pechmann,Chem. Ber.,21, 1411 (1888); H. A. Sinn.Dissertation, Technische Hochschule Darmstadt, 1966.

    Google Scholar 

  60. J. Burgess and C. D. Hubbard,J. Am. Chem. Soc.,106, 1717 (1984); N. Hallinan, P. McArdle, J. Burgess, and P. Guardado,J. Organometal. Chem., accepted for publication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abu-Gharib, EE.A., Ali, R.b., Blandamer, M.J. et al. The limiting dissociative mechanism for substitution at thed 6 centres molybdenum(O), iron(II), and cobalt(III): Kinetics of substitution at the pentacyano-4-Cyanopyridineferrate(II) anion and at 4-cyanopyridinemolybdenum(I) pentacarbonyl. Transition Met Chem 12, 371–378 (1987). https://doi.org/10.1007/BF01024038

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01024038

Keywords

Navigation