Log in

Evanescent fields in physics and their interpretations in terms of flowgraphs

  • Invited Papers
  • Published:
Applied physics Aims and scope Submit manuscript

Abstract

Evanescent waves and fields play an important role in microwaves, quantum mechanics, optics and elastic waves. Because electromagnetic waves in waveguides have dispersion characteristics similar to those of a unidimensional de Broglie wave, there is a close analogy between quantum mechanical tunneling and the transition through an attenuating sector of a waveguide. Microwave “evanescent mode” filters, quantummechanical tunneling resonance and optical frustrated total internal reflection filters are compared in light of this analogy. The flowgraph technique and “unit real” function representation are shown to be effective in discussing the interdependence of incident and reflected waves in various locations in multilayered structures. In electrognetic and elastic waves, the role of evanescent waves is significant in the case of incident beams of limited extent. The role of equivalent circuits of transverse resonance is discussed in the context of oscillatory natural modes determining the character of propagating fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Hupert, G. Ott: Am. J. Phys.24, 260 (1966)

    Article  ADS  Google Scholar 

  2. G.F. Craven, C.K. Mok: IEEE Trans. Microwave Theory Techniques MTT-19, 295 (1971)

    Article  Google Scholar 

  3. G. Goubau: J. Appl. Phys.21, 1119 (1950); and Proc. I.R.E.39, 619 (1951)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. T. Tamir: Optik37, 204 (1973)

    Google Scholar 

  5. J.J. Hupert, E.J. Schillinger: Electro-Technology, Science and Engineering Series,73, 53 (1964)

    Google Scholar 

  6. T. Tamir: Optik36, 209 (1972)

    Google Scholar 

  7. O. Bryndahl: In:Progress in Optics (American Elsevier Publishing Co., New York 1973) pp. 169–221

    Google Scholar 

  8. N.J. Harrick:Internal Reflection Spectroscopy (John Wiley & Sons, New York 1967), p. 9, 37, 152, 163

    Google Scholar 

  9. T. Tamir: Optik38, 269 (1973)

    Google Scholar 

  10. H.K.V. Lotsch: Optik32, 116 (1970)

    Google Scholar 

  11. T. Tamir, B.R. Horowitz: Appl. Phys.1, 31 (1973)

    Article  ADS  Google Scholar 

  12. J.J. Hupert: I.R.E. Trans. Circuit Theory CT-9, 425 (1962)

    Google Scholar 

  13. J.J. Hupert: IEEE Trans. Circuit Theory CT-15, 279 (1968)

    Google Scholar 

  14. J.J. Huppert: Proc. First Asilomar Conf. Circuits and Systems (1967) p. 867

  15. J.J. Hupert, J. Vigil: Electr. Letters4, 569 (1968)

    Article  Google Scholar 

  16. J.J. Hupert: I.E.E. Conf. Publication58, 185 (1969)

    Google Scholar 

  17. J.J. Hupert, Y. Sakaie: Proc. N.E.C. Chicago26, 657 (1970)

    Google Scholar 

  18. G. Craven: Microwave J.13, 51 (1970)

    Google Scholar 

  19. J.J. Hupert: Am. J. Phys.41, 119 (1973)

    Article  ADS  Google Scholar 

  20. R.F. Skedd, G. Craven: IEEE Trans. Magnetics MAG-3, 397 (1967)

    Article  ADS  Google Scholar 

  21. J.J.Hupert, T.Knowles: Proc. Sixth Asilomar Conf. Circuits and Systems (1972) p. 334

  22. S.J. Mason, H.J. Zimmermann:Electronic Circuits, Signals and Systems (J. Wiley & Sons Inc., New York 1960) Ch. 4, pp. 92–177

    Google Scholar 

  23. H. Haskal: IEEE Trans. Microwave Theory Techniques MTT-12, 184 (1964)

    Article  Google Scholar 

  24. I. Aronson, K. Kalikstein, C.J. Kleinman, L. Spruch: IEEE Trans. Microwave Theory Techniques MTT-18, 725 (1970)

    Article  Google Scholar 

  25. K. Kalikstein, J. Kleinman: IEEE Trans. Microwave Theory Techniques MTT-19, 673 (1971)

    Article  Google Scholar 

  26. J.D. Lawson: Am. J. Phys.33, 733 (1965)

    Article  ADS  Google Scholar 

  27. H. Hora: Optik17, 409 (1960)

    MathSciNet  Google Scholar 

  28. E.W. Cowan: Am. J. Phys.34, 1122 (1966)

    Article  ADS  Google Scholar 

  29. J.D. Lawson: Am. J. Phys.34, 601 (1966)

    Article  ADS  Google Scholar 

  30. J.J. Hupert: Proc. N.E.C. Chicago26, 663 (1970)

    Google Scholar 

  31. J.J. Hupert: Electr. Letters7, 241 (1971)

    Article  Google Scholar 

  32. R. Bellman, R. Kalaba: Proc. Natl. Acad. Sci.47, 1507 (1961)

    Article  ADS  Google Scholar 

  33. L.M. Brekhovskikh:Waves in Layered Media (Academic Press, New York 1960) pp. 12–15

    Google Scholar 

  34. L. Bergstein, C. Shulman: Appl. Optics5, 9 (1966)

    ADS  Google Scholar 

  35. B.R. Horowitz, T. Tamir: J. Opt. Soc. Am.61, 586 (1971)

    Article  ADS  Google Scholar 

  36. T. Tamir, B.R. Horowitz: Appl. Phys.1, 31 (1973)

    Article  ADS  Google Scholar 

  37. J.E. Midwinter: IEEE J. Quantum Electr. QE-6, 583 (1970)

    Article  ADS  Google Scholar 

  38. T. Tamir, H.L. Bertoni: J. Opt. Soc. Am.61, 1397 (1971)

    ADS  Google Scholar 

  39. L. Young: IRE Trans. Circuit Theory CT-7, 247 (1960)

    Google Scholar 

  40. J.H. Harris, R. Shubert: IEEE Trans. Microwave Theory Techniques MTT-19, 269 (1971)

    Article  Google Scholar 

  41. T.Tamir, H.L.Bertoni: Digest of Technical Papers, Topical Meeting on Integrated Optics, Las Vegas, Nev. (1972) pp. MB3-1-MB3-4

  42. K.O. Hill, A. Watanabe, J.G. Chambers: Appl. Opt.11, 1952 (1972)

    ADS  Google Scholar 

  43. N.S. Kapany:Fiber Optics (Academic Press, New York 1967)

    Google Scholar 

  44. N.S. Kapany, J.J. Burke:Optical Waveguides (Academic Press, New York 1972)

    Google Scholar 

  45. D. Marcuse:Light Transmission Optics (Van Nostrand, New York 1973)

    Google Scholar 

  46. W.M. Ewing, W.S. Yardetzky, F. Press:Elastic Waves in Layered Media (McGraw-Hill, New York 1957)

    MATH  Google Scholar 

  47. I.A. Viktorov:Rayleigh and Lamb Waves (Plenum Press, New York 1967)

    Google Scholar 

  48. R.M. White: Proc. IEEE58, 1238 (1970)

    Google Scholar 

  49. Special issue on microwave acoustics, IEEE Trans. Microwave Theory Techniques MTT-17 (1969)

  50. Speical issue on microwave acoustic signal processing, IEEE Trans. Microwave Theory Techniques MTT-21, (April 1973)

  51. S.T. Peng: Appl. Phys.1, 87 (1973)

    Article  ADS  Google Scholar 

  52. A.A. Oliner: IEEE Trans. Microwave Theory Techniques MTT-17, 812 (1969)

    Article  Google Scholar 

  53. A.A. Oliner, H.L. Bertoni, R.C.M. Li: Proc. IEEE60, 1512 (1972)

    Google Scholar 

  54. A.A. Oliner, C.M. Robert, H.L. Bertoni: Proc. IEEE60, 1513 (1972)

    Article  Google Scholar 

  55. R.A. Waldron: IEEE Trans. Microwave Theory Techniques MTT-17, 893 (1969)

    Article  Google Scholar 

  56. H.L.Bertoni: Proc. European Microwave Conference (1973) pp. C8/1–C8/4

  57. K.H. Yen, R.C.M. Li: Appl. Phys. Letters20, 284 (1972)

    Article  ADS  Google Scholar 

  58. H.L. Bertoni, T. Tamir: Appl. Phys.2, 157 (1973)

    Article  ADS  Google Scholar 

  59. J.J. Hupert: Electr. Letters2, 446 (1966)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hupert, J.J. Evanescent fields in physics and their interpretations in terms of flowgraphs. Appl. Phys. 6, 131–149 (1975). https://doi.org/10.1007/BF00883744

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00883744

Index Headings

Navigation