Log in

Electrophoretic karyoty** as a taxonomic tool in the genusSaccharomyces

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Summary

The electrophoretic karyotypes of strains of the ten species of the yeast genusSaccharomyces (sensu Vaughan-Martini & Martini 1992) were determined by the CHEF (contour-clamped homogeneous electric field) system of pulsed field gel electrophoresis. The number of bands was found to vary from 6 to 17 and the calculated molecular weights of haploid genomes ranged from 7.9 to 14.6 Mbp. The type strains ofS. exiguus and the four species of theSaccharomyces sensu stricto complex (S. bayanus, S. cerevisiae, S. paradoxus andS. pastorianus) have genomes comprised of chromosomes of all three size classes: light (< 500 kb), medium (500–1000 kb) and heavy (> 1,000 kb).Saccharomyces kluyveri DNA has only heavy bands, while the remaining species exhibit medium and heavy chromosomes. When more than one strain of each species was examined, it was seen that while the speciesS. bayanus, S. castellii, S. cerevisiae, S. kluyveri, S. paradoxus andS. pastorianus showed uniform karyotypes,S. dairensis, S. exiguus, S. servazzii andS. unisporus comprise heterogeneous taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batschinskaya AA (1914) Entwicklungsgeschichte und Kultur des neuen HefepilzesSaccharomyces paradoxus. J. Microbiol. Epidémiol. Immunobiol. II: 231–247

    Google Scholar 

  • Bernardi G, Faures M, Piperno G & Slonimski PP (1970) Mitochondrial DNAs from respiratory-sufficient and cytoplasmic respiratory-deficient mutants of yeasts. J. Mol. Biol. 48: 23–43.

    PubMed  Google Scholar 

  • Capriotti A (1966)Saccharomyces castellii n. sp. Una nuova specie di lievito isolata da un terreno della Finlandia. Ann. Fac. Agr. Univ. Sassari. 14: 3–8

    Google Scholar 

  • Capriotti A (1967)Saccharomyces servazii n. sp. A new yeast from Finland soil. Ann. Microbiol. Enzimol. (Milano) 17: 79–84

    Google Scholar 

  • Carle GF & Olsen MV (1985) An electrophoretic karyotype for yeast. Proc. Natl. Acad. Sci. USA 82: 3756–3760

    PubMed  Google Scholar 

  • Casey GP, **ao W & Rank GH (1988) Application of pulsed field chromosome electrophoresis in the study of chromosome XIII and the electrophoretic karyotype of industrial strains ofSaccharomyces yeasts. J. Inst. Brew. 94: 239–243

    Google Scholar 

  • De Jonge P, De Jongh PCM, Meijers R, Steensma HY & Scheffers WA (1987) Orthogonal-field-alternation gel electrophoresis banding patterns of DNA from yeasts. Yeast 2: 193–204.

    Google Scholar 

  • Hansen EC (1883) Undersøgelser over alkoholgjaersvampenes fysiologi og morfologi II Om askosporedannelsen hos slaegtenSaccharomyces. Medd. Carlsberg Lab. 2: 29–86

    Google Scholar 

  • Hansen EC (1888) Recherches sur la physiologie et la morphologie des ferments alcooliques VII Action des ferments alcooliques sur les diverses espèces de sucre. C.R. Trav. Lab. Carlsberg 2: 143–167

    Google Scholar 

  • Hansen EC (1904) Grundlinien für Systematik der Saccharomyceten. Zentralbl. Bakteriol. Parasitenk Abt II 12: 529–538

    Google Scholar 

  • Henriques M, Sá-Nogueira I, Giménez-Juradao G & van Uden N (1991) Ribosomal DNA spacer probes for yeast identification: Studies in the genusMetschnikowia. Yeast 7: 167–172

    PubMed  Google Scholar 

  • Johnston JR & Mortimer RK (1986) Electrophoretic karyoty** of laboratory and commercial strains ofSaccharomyces and other yeasts. Int. J. Syst. Bacteriol. 36: 569–572

    Google Scholar 

  • Johnston JR, Contopoulou CR & Mortimer RK (1988) Karyoty** of yeast strains of several genera by field inversion gel electrophoresis. Yeast 4: 191–198

    PubMed  Google Scholar 

  • Johnston JR, Curran L, Contopoulou RC & Mortimer RK (1989) Electrophoretic karyoty** of commercial brewing and distilling strains ofSaccharomyces and of other yeast. Yeast 5: 255–260

    Google Scholar 

  • Jörgensen A (1909) Die Mikroorganismen der Gärungsindustrie. 5te Auflage, P Parey, Berlin

    Google Scholar 

  • Kaneko Y, Mikata K & Banno I (1989) Karyoty** ofSaccharomyces exiguus by pulsed-field gel electrophoresis. IFO Res. Comm. 14: 111–117

    Google Scholar 

  • Kurtzman CP, Smiley MJ, Johnson CJ, Wickerham LJ & Fuson GB (1980) Two new and closely related heterothallic species,Pichia amylophila andPichia mississippiensis: characterization by hybridization and deoxyribonucleic acid reassociation. Int. J. Syst. Bacteriol. 30: 208–216

    Google Scholar 

  • Kurtzman CP, Phaff HJ & Meyer SA (1983) Nucleic acid relatedness among yeasts. In: JFT Spencer, DM Spencer & ARW Smith (Eds) Yeast Genetics Fundamental and Applied Aspects (pp. 139–166) Springer-Verlag, New York

    Google Scholar 

  • Kurtzman CP & Robnett CJ (1991) Phylogenetic relationships among species ofSaccharomyces, Schizosaccharomyces, Debaryomyces andSchwanniomyces determined from partial ribosomal RNA sequences. Yeast 7: 61–72

    PubMed  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of DNA from microorganisms. J. Mol. Biol. 3: 208–218

    Google Scholar 

  • Meyer SA & Phaff HJ (1969) Deoxyrybonucleic acid base composition in yeasts. J. Bacteriol. 97: 52–56

    PubMed  Google Scholar 

  • Miller M, Kock JLF, Pretorius GHJ & Coetzee DJ (1989) The value of orthogonal-field-alternation gel electrophoresis and other criteria in the taxonomy of the genusPichia Hansen emend Kurtzman. Syst. Appl. Microbiol. 12: 191–202

    Google Scholar 

  • Naganishi H (1917) Three new species of yeasts. Bot. Mag. Tokyo 31: 107–115

    Google Scholar 

  • Naumov GI (1986) Genetic differentiation and ecology of the yeastSaccharomyces paradoxus Batschinskaia. Dokl. Akad. Nauk. SSSR 289: 213–216

    Google Scholar 

  • Naumov GI (1987) Genetic basis for classification and identification of the ascomycetous yeast. pp. 469–475. In: The Expanding Realm of Yeast-like Fungi.Proc.Int.Symp. Perspectives of Taxonomy, Ecology and Phylogeny of Yeast and Yeast-like Fungi. (GS de Hoog, MTh Smith, ACM Weijman, eds). Amsterdam, Elsevier Science Publishers

    Google Scholar 

  • Naumov G, Naumova ES, Lantto RA, Louis EJ & Korhola M (1992) Genetic homology betweenSaccharomyces cerevisiae and its sibling speciesS. paradoxus andS. bayanus: Electrophoretic karyotypes. Yeast 8: 599–612

    PubMed  Google Scholar 

  • Pedersen MB (1986) DNA sequence polymorphisms in the genusSaccharomyces IV Homoeologous chromosomes,S. carlsbergensis andS. uvarum. Carlsberg Res. Commun. 51: 185–202

    Google Scholar 

  • Phaff HJ (1989) Trends in yeast systematics. Yeast 5: 341–350

    Google Scholar 

  • Phaff HJ, Miller MW & Shifrine M (1956) The taxonomy of yeasts isolated fromDrosophila in the Yosemite region of California. Antonie van Leeuwenhoek 22: 145–161

    PubMed  Google Scholar 

  • Price CW, Fuson GB & Phaff HJ (1978) Genome comparison in yeast systematics: delimitation of species within the generaSchwanniomyces, Saccharomyces, Debaryomyces andPichia. Microbiol. Rev. 42: 161–193

    PubMed  Google Scholar 

  • Rank GH, Casey G & **ao W (1988) Gene transfer in industrialSaccharomyces yeasts. Food Biotech. 2: 01–41

    Google Scholar 

  • Rosini G, Federici F, Vaughan AE & Martini A (1982) Systematics of the species of the yeast genusSaccharomyces associated with the fermentation industry. Europ. J. Appl. Microbiol. Biotechnol. 15: 188–193

    Google Scholar 

  • Saccardo PA (1895) Sylloge Fungorum omnium hucusque cognitorum. Vol 11: pars III, 457

  • Schwartz DC & Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37: 67–75

    Article  PubMed  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503

    PubMed  Google Scholar 

  • Vaughan-Martini A (1989)Saccharomyces paradoxus comb nov, a newly separated species of theSaccharomyces sensu stricto complex based upon nDNA/nDNA homologies. Syst. Appl. Microbiol. 12: 179–182

    Google Scholar 

  • Vaughan-Martini A & Kurtzman CP (1985) Deoxyribonucleic acid relatedness among species of the genusSaccharomyces sensu stricto. Int. J. Syst. Bacteriol. 35: 508–511

    Google Scholar 

  • Vaughan-Martini A & Kurtzman CP (1988) Deoxiribonucleic acid relatedness among species ofSaccharomyces sensu lato. Mycologia 80: 241–243

    Google Scholar 

  • Vaughan-Martini A & Martini A (1987) Three newly delimited species ofSaccharomyces sensu stricto. Antonie van Leeuwenhoek 53: 77–84

    PubMed  Google Scholar 

  • Vaughan-Martini A & Martini A (1992) A taxonomic key to the genusSaccharomyces Syst. Appl. Microbiol. 15: in press

  • Walt JP van der (1970)Saccharomyces emend Reess. In: J Lodder (ed) The Yeasts-a taxonomic study (pp. 555–718) North-Holland Publ. Co., Amsterdam

    Google Scholar 

  • Yarrow D & Nakase T (1975) DNA base composition of species of the genusSaccharomyces. Antonie van Leeuwenhoek. 41: 81–88

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaughan-Martini, A., Martini, A. & Cardinali, G. Electrophoretic karyoty** as a taxonomic tool in the genusSaccharomyces . Antonie van Leeuwenhoek 63, 145–156 (1993). https://doi.org/10.1007/BF00872389

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00872389

Key words

Navigation