Log in

Application of the Rosenburg kinetic method for determination of the parabolic rate constants for metal oxidation

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The Rosenburg continuous kinetic method is proposed for the determination of the parabolic rate constants of metal oxidation as a function of temperature and oxidant pressure. Using this method, it is possible to make numerous measurements in a continuous manner on a single metal sample left in situ in the furnace, thus eliminating systematic errors due to differences between samples. Moreover, using this method it is possible to determine directly from a given kinetic curve such important parameters as the coefficients of chemical diffusion and self-diffusion of the more mobile species in the studied compound and the total equilibrium defect concentration. The latter parameter has been inaccessible up to now by the experimental method. The limits of applicability of this method are given in the paper. As an example of this method, the kinetics of cobalt oxidation are investigated in the range of temperature 1000–1250°C and oxygen pressure 10−3−1 atm; the results compare favorably with those obtained by other authors. The method is, however, applicable to certain other systems, namely, metal oxides and sulfides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Kofstad,Nature 179, 362 (1957).

    Google Scholar 

  2. K. Przybylski and A. Stokłosa,Oxid. Met. 9(5), 441 (1975).

    Google Scholar 

  3. A. Rosenburg,J. Electrochem. Soc. 107, 795 (1960).

    Google Scholar 

  4. T. Smith,J. Electrochem. Soc. 112(6), 560 (1965).

    Google Scholar 

  5. E. Fryt, S. Mrowec, and T. Walec,Oxid. Met. 7(2), 117 (1973).

    Google Scholar 

  6. I. Bartkowicz, E. Fryt, and S. Mrowec,Bull. Acad. Pol. Sci. Ser. Sci. Chim. 16, 263 (1968).

    Google Scholar 

  7. I. Bartkowicz, E. Fryt, and S. Mrowec,Zesz. Nauk. Akad. Górn. Hutn. 422,Mat. Fiz. Chem. 20, 127 (1974).

    Google Scholar 

  8. C. Wagner,Z. Phys. Chem. 21, 25 (1933);32, 447 (1936);Prog. Solid State Chem. 10, 3 (1975).

    Google Scholar 

  9. S. Mrowec and A. Stokłosa,Oxid. Met. 8, 379 (1974).

    Google Scholar 

  10. E. Fryt,Oxid. Met. 10, (5), 311 (1976).

    Google Scholar 

  11. E. Fryt, S. Mrowec, and T. Walec,PAN, Ceramika 21, 117 (1974).

    Google Scholar 

  12. R. E. Carter and F. D. Richardson,Trans. Am. Inst. Min. Metall. Pet. Eng. 7, 336 (1955).

    Google Scholar 

  13. J. A. Snide, J. R. Myers, and R. K. Saxer,Cobalt 36, 157 (1967).

    Google Scholar 

  14. P. K. Kofstad and A. Z. Hed, Proc. 4th Int. Cong. Met. Corros., Amsterdam, September 7–14, 1969, p. 196.

  15. S. Mrowec, T. Walec, and T. Werber,Corros. Sci. 6, 287 (1966).

    Google Scholar 

  16. F. R. Billman,J. Electrochem. Soc. 119(9), 1198 (1972).

    Google Scholar 

  17. D. W. Bridges, J. P. Baur, and W. M. Fassel,J. Electrochem. Soc. 103, 614 (1956).

    Google Scholar 

  18. J. Krüger, A. Melin, and H. Winterhager,Cobalt 33, 176 (1966).

    Google Scholar 

  19. E. Fryt, S. Mrowec, and K. Przybylski,Zesz. Nauk. Akad. Górn. Hutn. 422,Mat. Fiz. Chem. 20, 13 (1974).

    Google Scholar 

  20. E. Fryt,Zesz. Nauk. Akad. Górn. Hutn. 494,Mat. Fiz. Chem. 23, 167 (1975).

    Google Scholar 

  21. K. Przybylski, Thesis, Academy of Mining and Metallurgy, Kraków (1977);S. Mrowec K. Przybylski,Oxid. Met. 11(6), 365, 383 (1977).

    Google Scholar 

  22. E. Fryt,Zesz. Nauk. Akad. Górn. Hutn. 494,Mat. Fiz. Chem. 23, 203 (1975).

    Google Scholar 

  23. H. Bibring, and F. Sebillean,Rev. Met. Lit. 52, 569 (1955).

    Google Scholar 

  24. J. B. Price and J. B. Wagner, Jr.,Z. Phys. Chem. Neue Folg. 49, 257 (1966).

    Google Scholar 

  25. G. J. Koel and P. J. Gellings,Oxid. Met. 5(3), 185 (1972).

    Google Scholar 

  26. H. Meurer, Thesis, Clausthal University (1969).

  27. J. M. Wimmer, R. N. Blumenthal, and I. Bransky,J. Phys. Chem. Solids 36, 269 (1975).

    Google Scholar 

  28. R. E. Carter and F. D. Richardson,J. Metals 6, 1244 (1954).

    Google Scholar 

  29. W. K. Chen, N. L. Peterson, and W. T. Reeves,Phys. Rev. 186(3), 887 (1969).

    Google Scholar 

  30. P. K. Kofstad,High Temperature Oxidation of Metals (Wiley, New York, 1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fryt, E.M. Application of the Rosenburg kinetic method for determination of the parabolic rate constants for metal oxidation. Oxid Met 12, 139–156 (1978). https://doi.org/10.1007/BF00740256

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00740256

Key words

Navigation