Log in

Fungal transformation of naphthalene

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Eighty-six species of fungi belonging to sixty-four genera were examined for their ability to metabolize naphthalene. Analysis by thin-layer and high pressure liquid chromatography revealed that naphthalene metabolism occurred in forty-seven species belonging to thirty-four genera from the major fungal taxa. All organisms tested from the order Mucorales oxidized naphthalene with species of Cunninghamella, Syncephalastrum and Mucor showing the greatest activity. Significant metabolism was also observed with Neurospora crassa, Claviceps paspali and four species of Psilocybe. The predominant metabolite formed by most organisms was 1-naphthol. Other products identified were, 4-hydroxy-1-tetralone, trans-1,2-dihydroxy-1,2-dihydronaphthalene, 2-naphthol, 1,2-and 1,4-naphthoquinone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambike, S. H., Baxter, R. M., Zahid, N. D.: The relationships of cytochrome P-450 levels and alkaloid synthesis in Claviceps purpurea. Phytochemistry 9, 1953–1958 (1970)

    Article  Google Scholar 

  • Auret, B. J., Boyd, D. R. Robinson, P. M., Watson, C. G., Daly, J. W., Jerina, D. M.: The NIH Shift during the hydroxylation of aromatic substrates by fungi. Chem. Commun. 1585–1587 (1971)

  • Blumer, M.: Polycyclic aromatic hydrocarbons in nature. Sci. Am. 234, 34–44 (1976)

    Google Scholar 

  • Bollag, J. M., Czaplicki, E. J., Minard, R. D.: Bacterial metabolism of 1-naphthol. Agric. Food Chem. 23, 85–90 (1975)

    Google Scholar 

  • Catterall, F. A., Murray, K., Williams, P. A.: The configuration of the 1,2-dihydroxy-1,2-dihydronaphthalene formed in the bacterial metabolism of naphthalene. Biochim. Biophys. Acta 237, 361–364 (1971)

    PubMed  Google Scholar 

  • Cerniglia, C. E., Gibson, D. T.: Metabolism of naphthalene by Cunninghamella elegans. Appl. Environ. Microbiol. 34, 363–370 (1977)

    PubMed  Google Scholar 

  • Cerniglia, C. E., Gibson, D. T.: Metabolism of naphthalene by cell extracts of Cunninghamella elegans. Arch. Biochem. Biophys. (1978, in press)

  • Dagley, S.: Catabolism of aromatic compounds by microorganisms. Adv. Microbial. Physiol. 6, 1–46 (1971)

    Google Scholar 

  • Daly, J. W., Jerina, D. M., Witkop, B.: Arene oxides and the NIH shift: The metabolism, toxicity and carcinogenicity of aromatic compounds. Experientia 28, 1129–1149 (1972)

    PubMed  Google Scholar 

  • Duppel, W., Lebeault, J. J., Coon, M. J.: Properties of a yeast cytochrome P-450 containing enzyme system which catalyzes the hydroxylation of fatty acids, alkanes, and drugs. Eur. J. Biochem. 36, 583–592 (1973)

    PubMed  Google Scholar 

  • Ferris, J. P., Fasco, M. J., Stylianopoulou, F. L., Jerina, D. M., Daly, J. W., Jeffrey, A. M.: Monooxygenase activity in Cunninghamella bainieri: Evidence for a fungal system similar to liver microsomes. Arch. Biochem. Biophys. 156, 97–103 (1973)

    PubMed  Google Scholar 

  • Ferris, J. P., MacDonald, L. H., Patrie, M. A., Martin, M. A.: Aryl hydrocarbon hydroxylase activity in the fungus Cunninghamella bainieri: Evidence for the presence of cytochrome P-450. Arch. Biochem. Biophys. 175, 443–452 (1976)

    PubMed  Google Scholar 

  • Gallo, M., Roche, B., Azoulay, E.: Microsomal cytochromes of Candida tropicalis grown on alkanes. Biochim. Biophys. Acta 419, 425–434 (1976)

    PubMed  Google Scholar 

  • Gibson, D. T.: The microbial oxidation of aromatic hydrocarbons. Crit. Rev. Microbiol. 1, 199–223 (1972)

    Google Scholar 

  • Gibson, D. T.: Biodegradation of aromatic petroleum hydrocarbons. In: Fate and effects of petroleum hydrocarbons (D. A. Wolfe, ed.), pp. 36–46. New York: Pergamon Press 1977

    Google Scholar 

  • Jeffrey, A. M., Yeh, H. J. C., Jerina, D. M., Patel, T. R., Davey, J. F., Gibson, D. T.: Initial reactions in the oxidation by naphthalene by Pseudomonas putida. Biochemistry 14, 575–584 (1975)

    PubMed  Google Scholar 

  • Jerina, D. M., Daly, J. W., Witkop, B., Zaltzman-Nirenberg, P., Udenfriend, S.: Role of arene oxide-oxepin system in the metabolism of aromatic substrates. I. In vitro conversion of benzene oxide to a premercapturic acid and a dihydrodiol. Arch. Biochem. Biophys. 128, 176–183 (1968a)

    Google Scholar 

  • Jerina, D. M., Daly, J. W., Witkop, B., Zaltzman-Nirenberg, P., Udenfriend, S.: The role of arene oxide-oxepin systems in the metabolism of aromatic substrates. III. Formation of 1,2-naphthalene oxide from naphthalene by liver microsomes. J. Am. Chem. Soc. 90, 6525–6527 (1968b)

    PubMed  Google Scholar 

  • Jerina, D. M., Daly, J. W., Witkop, B., Zaltzman-Nirenberg, P.: Udenfriend, S.: 1,2-Naphthalene oxide as an intermediate in the microsomal hydroxylation of naphthalene. Biochemistry 9, 147–156 (1970)

    PubMed  Google Scholar 

  • Jerina, D. M., Daly, J. W., Jeffrey, A. M., Gibson, D. T.: cis-1,2-Dihydroxy-1,2-dihydronaphthalene: a bacterial metabolite from naphthalene. Arch. Biochem. Biophys. 142, 394–396 (1971)

    PubMed  Google Scholar 

  • Jerina, D. M., Daly, J. W.: Arene oxides: a new aspect of drug metabolism. Science 185, 573–582 (1974)

    PubMed  Google Scholar 

  • Lebeault, J. M., Lode, E. T., Coon, M. J.: Fatty acid and hydrocarbon hydroxylation in yeast: Role of cytochrome P-450 in Candida tropicalis. Biochem. Biophys. Res. Commun. 42, 413–419 (1971)

    PubMed  Google Scholar 

  • Machlis, L.: Growth and nutrition of water molds in the sub-genus Euallomyces. II. Optimal composition of the minimal medium. Am. J. Bot. 40, 450–460 (1953)

    Google Scholar 

  • Murphy, G., Vogel, G., Krippahl, G., Lynen, F.: Patulin biosynthesis: The role of mixed function oxidases in the hydroxylation of m-cresol. Eur. J. Biochem. 49, 443–455 (1974)

    PubMed  Google Scholar 

  • Oesch, F., Jerina, D. M., Daly, J. W.: Conversion of naphthalene to trans-naphthalene dihydrodiol: Evidence for the presence of a coupled aryl monooxygenase-epoxide hydrase system in hepatic microsomes. Biochem. Biophys. Res. Commun. 46, 1713–1720 (1971)

    Google Scholar 

  • Oesch, F., Jerina, D. M., Daly, J. W., Lu, A. Y. H., Kuntzman, R., Conney, A. H.: A reconstituted microsomal enzyme system that converts naphthalene to trans-1,2-dihydroxy-1,2-dihydronaphthalene via naphthalene-1,2-oxide: Presence of epoxide hydrase in cytochrome P-450 and P-448 fractions. Arch. Biochem. Biophys. 153, 62–67 (1972)

    PubMed  Google Scholar 

  • Oesch, F.: Mammalian epoxide hydrases: Inducible enzymes catalyzing the inactivation of carinogenic metabolites derived from aromatic and olefinic compounds. Xenobiotica 3, 305–340 (1973)

    PubMed  Google Scholar 

  • Smith, R. V., Rosazza, J. P.: Microbial models of mammalian metabolism. Aromatic hydroxylation. Arch. Biochem. Biophys. 161, 551–558 (1974)

    PubMed  Google Scholar 

  • Stanier, R. Y., Ornston, L. N.: The β-ketoadipate pathway. Adv. Microbial Physiol. 9, 89–151 (1973)

    Google Scholar 

  • Wiseman, A., Gondal, J. A., Sims, P.: 4′-Hydroxylation of biphenyl by yeast containing cytochrome P-450: Radiation and thermal stability, comparisons with liver enzyme (oxidized and reduced forms). Biochem. Soc. Trans. 3, 278–281 (1975)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerniglia, C.E., Hebert, R.L., Szaniszlo, P.J. et al. Fungal transformation of naphthalene. Arch. Microbiol. 117, 135–143 (1978). https://doi.org/10.1007/BF00402301

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00402301

Key words

Navigation