Log in

Inhibition of ion accumulation in maize roots by abscisic acid

  • Published:
Planta Aims and scope Submit manuscript

Summary

An inhibition of root growth, a decrease in the amount of potassium (as 86Rb) and phosphate (32P) accumulation by the root, and a partial depolarization of transmembrane electropotential were observed to develop with a similar time course and to a similar extent when intact maize (Zea mays L.) roots were treated with 10-5 M abscisic acid (ABA). Potassium uptake was inhibited by ABA when excised, low-salt roots were bathed in KCl, KH2PO4, or K2SO4. ABA did not affect the ATP content of the tissues, the activity of isolated mitochondria, nor the activity of microsomal K+-stimulated ATPases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arntzen, C. J., Haugh, M. F., Robick, S.: Induction of stomatal closure by Helminthosporium maydis pathotoxin. Plant Physiol. 52, 569–574 (1973)

    Google Scholar 

  • Bruno, G. A., Christian, J. E.: Determination of carbon-14 in aqueous bicarbonate solutions by liquid scintillation counting techniques: application to biological fluids. Anal. Chem. 33, 1216–1218 (1961)

    Google Scholar 

  • Collins, J. C., Kerrigan, A. P.: Hormonal control of ion movement in the plant root? In: Ion transport in plants, p. 586–593, Anderson, W. P., ed. New York: Acad. Press 1973

    Google Scholar 

  • Cram, W. J., Pitman, M. G.: The action of abscisic acid on ion uptake and water flow in plant roots. Aust. J. biol. Sci. 25, 1125–1132 (1972)

    Google Scholar 

  • Cummins, W. R., Kende, H., Raschke, K.: Specificity and reversibility of the rapid stomatal response to abscisic acid. Plant (Berl.) 99, 347–351 (1971)

    Google Scholar 

  • Epstein, E.: Mineral nutrition of plants: principles and perspectives. New York: Wiley 1972

    Google Scholar 

  • Fischer, J. D., Hansen, D., Hodges, T. K.: Correlation between ion fluxes and ion-stimulated adenosine triphophatase activity of plant roots. Plant Physiol. 46, 812–814 (1970)

    Google Scholar 

  • Higinbotham, N.: Electropotentials of plant cells. Ann. Rev. Plant Physiol. 24, 25–26 (1973)

    Google Scholar 

  • Higinbotham, N., Graves, J. S., Davis, R. F.: Evidence for an electrogenic ion transport pump in cells of higher plants. J. Membrane Biol. 3, 210–222 (1970)

    Google Scholar 

  • Hodges, T. K.: Ion absorption by plant roots. Adv. Agron. 25, 163–207 (1973)

    Google Scholar 

  • Horton, R. F.: Stomatal opening: the role of abscisic acid. Canad. J. Bot. 49, 583–585 (1971)

    Google Scholar 

  • Leonard, R. T., Hodges, T. K.: Characterization of plasma membrane-associated adenosine triphosphate activity of oat roots. Plant Physiol. 52, 6–12 (1973)

    Google Scholar 

  • Lin, W., Hanson, J. B.: Phosphate absorption rate and ATP concentration in corn root tissue. Plant Physiol. 54, 250–256 (1974)

    Google Scholar 

  • Lowry, O. N., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–276 (1951)

    PubMed  Google Scholar 

  • Mansfield, T. A., Jones, R. J.: Effects of abscisic acid on potassium uptake and starch content of stomatal guard cells. Planta (Berl.) 101, 147–158 (1971)

    Google Scholar 

  • Mertz, S. M., Jr.: Electrical potentials and kinetics of potassium, sodium, and chloride uptake in barley roots. Dissert. Abstr. Int. 33, No. 12, 5697-B (1973)

    Google Scholar 

  • Milborrow, B. V.: The chemistry and physiology of abscisic acid. Ann. Rev. Plant Physiol. 25, 259–307 (1974)

    Google Scholar 

  • Miller, R. J., Dumford, S. W., Koeppe, D. E., Hanson, J. B.: Divalent cation stimulation of substrate oxidation by corn mitochondria. Plant Physiol. 45, 649–653 (1970)

    Google Scholar 

  • Newton, R. J.: Abscisic acid effects on growth and metabolism in roots of Lemna minor. Physiol. Plant. 30, 108–112 (1974)

    Google Scholar 

  • Pitman, M. G., Cram, W. J.: Regulation of inorganic ion transport in plants. In: Ion transport in plants, p. 465–481, Anderson, W. P., ed. New York: Acad. Press 1973

    Google Scholar 

  • Rehm, M., Cline, M. G.: Rapid growth inhibition of Avena coleoptile segments by abscisic acid. Plant Physiol. 51, 93–96 (1973)

    Google Scholar 

  • Risueno, M. C., Diez, J. L., Gimenez-Martin, G., De Le Torre, C.: Ultrastructural studies of the effect of ABA on cell elongation in plant cells. Protoplasma 73, 323–328 (1971)

    Google Scholar 

  • Van Steveninck, F. R. M.: Abscisic acid stimulation of ion transport and alteration in K+-Na+ selectivity. Z. Pflanzenphysiol. 67, 282–286 (1972)

    Google Scholar 

  • Warner, H. L., Leopold, A. C.: Timing of growth regulator responses in peas. Biochem. biophys. Res. Commun. 44, 989–994 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaner, D.L., Mertz, S.M. & Arntzen, C.J. Inhibition of ion accumulation in maize roots by abscisic acid. Planta 122, 79–90 (1975). https://doi.org/10.1007/BF00385407

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00385407

Keywords

Navigation