Log in

Mg2+-Dependent, cation-stimulated inorganic pyrophosphatase associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.)

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Vacuoles isolated from storage roots of red beet (Beta vulgaris L.) posess a Mg2+-dependent, alkaline pyrophosphatase (PPase) activity which is further stimulated by salts of monovalent cations. The requirement for Mg2+ is specific. Mn2+ and Zn2+ permitted only 20% and 12%, respectively, of the PPase activity obtained in the presence of Mg2+ while Ca2+, Co2+ and Cu2+ were ineffective. Stimulation of Mg2+-PPase activity by salts of certain monovalent cations was due to the cation and the order of effectiveness of the cations tested was K+=Rb+=NH +4 >Cs+. Salts of Li+ and Na+ inhibited Mg2+-PPase activity by 44% and 24%, respectively. KCl-stimulation of Mg2+-PPase activity was maximal with 60–100 mM KCl. There was a sigmoidal relationship between PPase activity and Mg2+ concentrations which resulted in markedly non-linear Lineweaver-Burk plots. At pH 8.0, the optimal [Mg2+]:[PPi] ratio for both Mg2+-PPase and (Mg2++KCl)-PPase activities was approximately 1:1, which probably indicates MgP2O7 2- is the true substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumen

EDTA:

ethylenediamine tetra-acetic acid, disodium salt

MES:

2-(N-morpholino)ethanesulphonic acid

Mg 2+T :

total magnesium

Pi :

inorganic phosphate

PPase:

inorganic pyrophosphatase

PPi :

inorganic pyrophosphate

TCA:

trichloroacetic acid

Tris:

tris(hydroxymethyl)methylamine

References

  • Baltscheffsky, H., Baltscheffsky, M., Von Stedingk, L. (1969) Inorganic pyrophosphate, bacterial photophosphorylation and evolution of biological energy transformation. In: Progress in photosynthesis research, vol. 3, pp. 1313–1318, Metzner, H. ed. International Clarion of Biol. Sciences, Tübingen

    Google Scholar 

  • Barsky, E.L., Bonch-Osmolovskaya, E.A., Ostroumov, S.A., Samuilov, V.D., Skulachev, V.P. (1975) A study on the membrane potential and pH gradient in chromophores and intact cells of photosynthetic bacteria. Biochim. Biophys. Acta. 387, 388–395

    PubMed  Google Scholar 

  • Bucke, C. (1970) The distribution and properties of alkaline inorganic pyrophosphatase from higher plants. Phytochemistry 9, 1303–1309

    Article  Google Scholar 

  • Butler, L.G. (1971) Yeast and other inorganic pyrophosphatases. In: The enzymes, 3rd edition, vol. 4, pp. 529–541, Boyer, P.D., ed. Academic Press, New York

    Google Scholar 

  • El-Badry, A.M., Bassham, J.A. (1970) Chloroplast inorganic pyrophosphatase. Biochim. Biophys. Acta 197, 308–316

    PubMed  Google Scholar 

  • Gavalas, N.A., Manetas, Y. (1980) Calcium inhibition of pyrophosphatase in crude plant extracts. Implication of soluble calcium in C4 photosynthesis. Plant Physiol. 65, 860–863

    Google Scholar 

  • Gould, J.M., Winget, G.D. (1973) A membrane-bound alkaline inorganic pyrophosphatase in isolated spinach chloroplasts. Arch. Biochem. Biophys. 154, 606–613

    PubMed  Google Scholar 

  • Josse, J. (1966) Constitutive inorganic pyrophosphatase of Escherichia coli. II. Nature and binding of active substrate and the role of magnesium. J. Biol. Chem. 241, 1948–1957

    PubMed  Google Scholar 

  • Karlsson, J. (1975) Membrane-bound potassium and magnesium ion stimulated inorganic pyrophosphatase from roots and cotyledons of sugar beet (Beta vulgaris L.). Biochim. Biophys. Acta 399, 356–363

    PubMed  Google Scholar 

  • Klemme, J., Gest, H. (1971) Regulatory properties of an inorganic pyrophosphatase from the photosynthetic bacterium Rhodospirillum rubrum. Proc. Natl. Acad. Sci. USA 68, 721–725

    PubMed  Google Scholar 

  • Klemme, B., Jacobi, G. (1974) Der Einfluß von Stärke auf die Aktivität der Pyrophosphatase aus isolierten. Chloroplasten. Planta 120, 155–162

    Google Scholar 

  • Kunitz, M. (1952) Crystalline inorganic pyrophosphatase isolated from Bakers Yeast. J. Gen. Physiol. 35, 423–450

    Article  PubMed  Google Scholar 

  • Lambert, S.M., Watters, J.I. (1957) The complexes of Mg2+ ion with pyrophosphate and triphosphate ions. J. Am. Chem. Soc. 79, 5606–5608

    Google Scholar 

  • Leigh, R.A., Branton, D. (1976) Isolation of vacuoles from root storage tissue of Beta vulgaris L. Plant Physiol. 58, 656–662

    Google Scholar 

  • Leigh, R.A., ap Rees, T., Fuller, W.A., Banfield, J. (1979) The location of acid invertase activity and sucrose in the vacuoles of storage roots of beetroot (Beta vulgaris L.). Biochem. J. 178, 539–547

    PubMed  Google Scholar 

  • Leigh, R.A., Walker, R.R. (1980a) A method for preventing sorbitol interference with the determination of inorganic phosphate. Anal. Biochem. 106, 279–284

    PubMed  Google Scholar 

  • Leigh, R.A., Walker, R.R. (1980b) ATPase and acid phosphatase activities associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.). Planta 150, 222–229

    Google Scholar 

  • Lineweaver, J., Burk, D. (1934) The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56, 658–666

    Google Scholar 

  • Lowry, O.H., Rosebrough, R.J., Farr, A.L., Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275

    PubMed  Google Scholar 

  • Mitchell, P. (1970) Membranes of cells and organelles: morphology, transport, and metabolism. Symp. Soc. Gen. Microbiol. 20, 121–166

    Google Scholar 

  • Moe, O.A., Butler, L.G. (1972) Yeast inorganic pyrophosphatase. II. Kinetics of Mg2+ activation. J. Biol. Chem. 247, 7308–7314

    PubMed  Google Scholar 

  • Moyle, J., Mitchell, R., Mitchell, P. (1972) Proton-translocating pyrophosphatase of Rhodospirillum rubrum. FEBS Lett. 23, 233–236

    Article  PubMed  Google Scholar 

  • Naganna, B., Venugopal, B., Sripathi, C.E. (1955) Occurrence of alkaline pyrophosphatase in vegetable tissues. Biochem. J. 60, 224–225

    PubMed  Google Scholar 

  • Rip, J.W., Rauser, W.E. (1971) Partial purification and some properties of alkaline inorganic pyrophosphatase from Zea mays leaves. Phytochemistry 10, 2615–2619

    Article  Google Scholar 

  • Robbins, E.A., Stulberg, M.P., Boyer, P.D. (1955) The magnesium activation of pyrophosphatase. Arch. Biochem. Biophys. 54, 215–222

    Google Scholar 

  • Simmons, S., Butler, L.G. (1969) Alkaline inorganic pyrophosphatase of maize leaves. Biochim. Biophys. Acta 172, 150–157

    PubMed  Google Scholar 

  • Walker, R.R., Leigh, R.A. (1981) Characterisation of a salt-stimulated ATPase activity associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.). Planta 153, 140–149

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, R.R., Leigh, R.A. Mg2+-Dependent, cation-stimulated inorganic pyrophosphatase associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.). Planta 153, 150–155 (1981). https://doi.org/10.1007/BF00384096

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00384096

Key words

Navigation