Log in

Cyanellar Ferredoxin-NADP+-oxidoreductase of Cyanophora paradoxa is encoded by the nuclear genome and synthesized on cytoplasmatic 80S ribosomes

  • Short Communications
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Cyanophora paradoxa is an important model organism for the study of the transition from endocytobiontic cyanobacteria to factual eukaryotic cell organelles. The cyanelles of these organisms possess cyanobacterial, as well as plastidic, characteristics. Although the transfer of cyanellar proteins from cytosolic into cyanellar space has been shown, the process of translocation of a known protein across the peptidoglycan layer and the envelope membranes has not been characterized. In this study we demonstrate that a specific and obligate cyanelle protein —Ferredoxin-NADP+-oxidoreductase (FNR) — is coded on the nuclear genome, synthesized on 80S ribosomes and transported from the eukaryotic cell compartment into the cyanelles of Cyanophora paradoxa, an original intracellular host-guest relation. These results indicate a gene transfer from guest to host genome and support the view that, in spite of their cyanobacterial origin, cyanelles have been evolved to cell organelles comparable to plastids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aitken A, Stanier RY (1979) J Gen Microbiol 112:219–223

    Google Scholar 

  • Bayer MG, Schenk HEA (1986) Endocytol Cell Res 3:197–202

    Google Scholar 

  • Bayer MG, Schenk HEA (1989) Curr Genet 16:311–313

    Google Scholar 

  • Bohnert HJ, Michalowski C, Bevacque S, Mucke H, Löffelhardt W (1985) Mol Gen Genet 201:565–575

    Google Scholar 

  • Brandtner M, Smeekens S, Weisbeck P, Bohnert HJ, Löffelhardt (1988) Biol Chem Hoppe-Seyler 369:800

    Google Scholar 

  • Bryant DA, de Lorimier R, Lambert DH, Dubbs JM, Stirewalt VL, Stevens SE, Porter RD, Tam J, Jay E (1985) Proc Natl Acad Sci USA 82:3242–3246

    Google Scholar 

  • Carrillo N (1985) Eur J Biochem 150:469–474

    Google Scholar 

  • Carrillo N, Vallejos RH (1983) Trends Biochem Sci 8:52–56

    Google Scholar 

  • Heinhorst S, Shively JM (1983) Nature 304:373–374

    Google Scholar 

  • Heinz G (1973) Diplomarbeit Tübingen

  • Herdman M, Stanier RY (1977) FEMS Microbiol Lett 1:7–12

    Google Scholar 

  • Jansen T, Reiländer H, Steppuhn J, Herrmann RG (1988) Curr Genet 13:517–522

    Google Scholar 

  • Janssen I, Jakowitsch J, Michalowski CB, Bohnert HJ, Löffelhardt W (1989) Curr Genet 15:335–340

    Google Scholar 

  • Kuntz M, Crouse EJ, Mumbumbila M, Bukard G, Weil JH, Bohnert HJ, Mucke J, Loeffelhardt W (1984) Mol Gen Genet 194:508–512

    Google Scholar 

  • Karplus PA, Walsh KA, Herriott JR (1984) Biochem 23:6576–6583

    Google Scholar 

  • Lambert DH, Bryant DA, Stirewalt VL, Dubbs JM, Stevens SE, Porter RD (1985) J Bacteriol 164:659–664

    Google Scholar 

  • Lemaux PG, Grossman AR (1984) Proc Natl Acad Sci USA 81:4100–4104

    Google Scholar 

  • Michalowski CB, Schmitt JM, Bohnert HJ (1989) Plant Physiol 89:817–822

    Google Scholar 

  • Newman BJ, Gray JC (1988) Plant Mol Biol 10:511–520

    Google Scholar 

  • Sancho J, Peleato ML Gomez-Moreno C, Edmondson DE (1988) Arch Biochem Biophys 260:200–207

    Google Scholar 

  • Schenk HEA (1970) Z Naturforsch 25b:640

    Google Scholar 

  • Schenk HEA (1977) Arch Protistenk 119:274–300

    Google Scholar 

  • Schenk HEA, Bayer MG, Zook D (1987) Ann NY Acad Sci 503:151–167

    Google Scholar 

  • Serrano A (1986) Anal Biochem 154:441–448

    Google Scholar 

  • Starnes SM, Lambert DH, Maxwell ES, Stevens SE, Porter RD, Shively JM (1985) FEMS Microbiol Lett 28:165–169

    Google Scholar 

  • Sutherland MW, Skeritt JH (1986) Electrophoresis 7:401–406

    Google Scholar 

  • Wasmann CC, Löffelhardt W, Bohnert HJ (1987) In: Fay P, Van Baalen C (eds) The cyanobacteria. Elsevier, Amsterdam New York

    Google Scholar 

  • Yao Y, Tamura T, Wada K, Matsubara H, Kodo K (1984) J Biochem 95:1513–1516

    Google Scholar 

  • Taylor FJR (1974) Taxon 23:229–258

    Google Scholar 

  • Zook D, Schenk HEA (1986) Endocytol Cell Res 3:203–211

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Wolf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayer, M.G., Maier, T.L., Gebhart, U.B. et al. Cyanellar Ferredoxin-NADP+-oxidoreductase of Cyanophora paradoxa is encoded by the nuclear genome and synthesized on cytoplasmatic 80S ribosomes. Curr Genet 17, 265–267 (1990). https://doi.org/10.1007/BF00312619

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312619

Key words

Navigation