Log in

The size and scar distributions of the yeast Saccharomyces cerevisiae

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A model for the growth of populations of Saccharomyces cerevisiae is formulated and analysed. The probability of bud emergence is assumed to depend on the size of the cell. Under certain conditions on birth size the model can be reduced to a single renewal equation. Using Laplace transform techniques and renewal theory we establish the existence of a stable scar and size distribution under certain conditions on the growth rate of individual cells. The steady state values for the relative frequencies of unbudded and budded cells in the various scar classes are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J., Rothman, E.D., Beran, K.: The age structure of populations of Saccharomyces cerevisiae. Math. Biosci. 53, 249–263 (1981)

    Google Scholar 

  • Bellman, R., Cooke, K. L.: Differential-difference equations. Academic Press, New York-London (1963)

    Google Scholar 

  • Beran, K.: Budding of yeast cells, their scars and ageing. Advan. Microb. Physiol. 2, 143–171 (1968)

    Google Scholar 

  • Beran, K., Streiblova, E., Lieblova, J.: On the concept of the population of the yeast Saccharomyces cerevisiae. In: Kochova-Kratochivilova, A. (ed.). Proceedings of the Second Symposium on Yeasts. Publ. House Slovak. Acad. Sci. Bratislava, 353–363 (1969)

    Google Scholar 

  • Diekmann, O.: The dynamics of structured populations: Some examples. In: Capasso, V., Grosso, E., Paveri-Fontana, S. L. (eds.). Mathematics in biology and medicine. Proceedings, Bari, 1983. Springer Lecture Notes Biomath. 57, 7–18 (1985)

  • Diekmann, O., Heijmans, H. J. A. M., Thieme, H.: On the stability of the cell size distribution. J. Math. Biol. 19, 227–248 (1984)

    Google Scholar 

  • Feller, W.: On the integral equation of renewal theory. Ann. Math. Statist. 12, 243–267 (1941)

    Google Scholar 

  • Feller, W.: An introduction to probability theory and its applications, vol. II, 2nd edn. Wiley, New York-London-Sydney-Toronto (1971)

    Google Scholar 

  • Fink, A. M.: Almost periodic functions. Springer Lect. Notes Math. 377. Springer, Berlin-Heidelberg-New York (1974)

  • Gani, J., Saunders, I. W.: Fitting a model to the growth of yeast colonies. Biometrics 33, 113–120 (1977)

    Google Scholar 

  • Gurtin, M. E., MacCamy, R. C.: Population dynamics with age dependence, in non-linear analysis and Mechanics: Heriot-Watt Symposium, vol. III. Knops, R. J. (ed.). Pitman, San Francisco, T-35 (1979)

    Google Scholar 

  • Gyllenberg, M.: The age structure of populations of cells reproducing by asymmetric division. In: Capasso, V., Grosso, E., Paveri-Fontana, S. L. (eds.). Mathematics in biology and medicine. Proceedings, Bari, 1983. Springer Lect. Notes Biomath. 57, 320–327 (1985)

  • Gyllenberg, M., Heijmans, H. J. A. M.: An abstract delay-differential equation modelling size dependent cell growth and division. Preprint (1985)

  • Hamada, T., Kanno, S., Kano, E.: Stationary stage structure of yeast population with stage dependent generation time. J. Theor. Biol. 97, 393–414 (1982)

    Google Scholar 

  • Hamada, T., Nakamura, Y.: On the oscillatory transient stage structure of yeast population. J. Theor. Bil. 99, 797–805 (1982)

    Google Scholar 

  • Hartwell, L. H., Unger, M. W.: Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. J. Cell. Biol. 75, 422–435 (1977)

    Google Scholar 

  • Hjortso, M. A., Bailey, J. E.: Steady-state growth of budding yeast populations in well-mixed continuous flow microbial reactors. Math. Biosci. 60, 235–263 (1982)

    Google Scholar 

  • Hjortso, M. A., Bailey, J. E.: Transient responses of budding yeast populations. Math. Biosci. 63, 121–148 (1983)

    Google Scholar 

  • Hoppensteadt, F.: Mathematical theories of populations: demographics, genetics and epidemics. SIAM, Philadelphia, Pennsylvania (1975)

    Google Scholar 

  • Johnston, G. C., Pringle, J. R., Hartwell, L. H.: Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp. Cell Res. 105, 79–98 (1977)

    Google Scholar 

  • Lord, P. G., Wheals, A. E.: Asymmetrical division of Saccharomyces cerevisiae. J. Bacteriol. 142, 808–818 (1980)

    Google Scholar 

  • Lord, P. G., Wheals, A. E.: Variability in individual cell cycles of Saccharomyces cerevisiae. J. Cell. Sci. 50, 361–376 (1981)

    Google Scholar 

  • Markushevich, A. I.: Theory of functions of a complex variable, vol. 2 (English translation). Prentice-Hall Inc., Englewood Cliffs, N.J. (1965)

    Google Scholar 

  • Metz, J. A. J., Diekmann, O.: Dynamics of physiologically structured populations. Springer Lect. Notes Biomath. (to appear)

  • Mortimer, R. K., Johnston, J. R.: Life span of individual yeast cells. Nature 183, 1751–1752 (1959)

    Google Scholar 

  • Tuljapurkar, S. D.: Transient dynamics of yeast populations. Math. Biosci. 64, 157–168 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyllenberg, M. The size and scar distributions of the yeast Saccharomyces cerevisiae . J. Math. Biology 24, 81–101 (1986). https://doi.org/10.1007/BF00275722

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275722

Key words

Navigation