Log in

Paleoecological investigations of recent lake acidification in northern Florida

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Thirty-two northern Florida lakes were analyzed to construct a transfer function relating surface sediment diatom assemblages to lakewater pH (R 2=0.89, s.e.=0.34). A paleoecological analysis of sediment cores from six of these lakes indicated that two have become more acidic in the last 50 years. The diatom inferred (DI) pH of L. Barco has declined between 0.56–0.82 in the 1900's and DI ANC (acid neutralizing capacity) by 28–46 μeq l-1. The DI pH of nearby L. Suggs has declined 0.91 pH units and its DI ANC by 19 μeq l-1. The timing of the inferred acidification is synchronous with known increases in emissions of sulfates and nitrates that are associated with acidic precipitation. Also, the increasing accumulation of substances related to emissions from the burning of fossil fuels (e.g., Pb, PAH) co-occurs with the lowering of DI pH in the sedimentary record. However, other processes may have accounted for or contributed to recent lake acidification. For instance, the drawdown of local water tables by human consumption may decrease the inseepage of ANC to seepage lakes. Such an effect would be synchronous with increasing depositions of sulfate. There is also clear evidence that Florida lakes are naturally acidic. Thus, paleoecological results indicate acidic deposition to be at certain contributor, but not necessarily the sole cause, of the recent further acidification of some naturally acidic Florida lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D. S., R. B. Davis & F. Berge, 1986. Relationships between diatom assemblages in lake surface-sediments and limnological characteristics in southern Norway. In: Smol, J. P., R. W. Battarbee, R. B. Davis & J. Meriläinen (eds.), Diatoms and Lake Acidity. W. Junk Publishers, Dordrecht, pp. 97–113.

    Google Scholar 

  • Arzet, K., C. Steinberg, R. Psenner & N. Schulz, 1986. Diatom distribution and diatom-inferred pH in the sediment of four alpine lakes. Hydrobiologia 143: 247–254.

    Google Scholar 

  • Baker, L. A. & P. L. Brezonik, 1988. Dynamic model of in-lake alkalinity generation. Wat. Res. 24: 65–74.

    Google Scholar 

  • Baker, L. A., P. L. Brezonik & C. D. Pollman, 1986. Model of internal alkalinity generation: sulfate retention component. Wat. Air. Soil Pollut. 31: 89–94.

    Google Scholar 

  • Baker, L. A., C. D. Pollman & J. M. Eilers, 1988. Alkalinity regulation in softwater Florida lakes. Wat. Res. 24: 1069–1082.

    Google Scholar 

  • Baron, J., S. A. Norton, D. R. Beeson & R. Harriman, 1986. Sediment diatom and metal stratigraphy from Rocky Mountain lakes with special reference to atmospheric deposition. Can. J. Fish. aquat. Sci. 43: 1350–1362.

    Google Scholar 

  • Battarbee, R. W., 1984. Diatom analysis and the acidification of lakes. Phil. Trans. r. Soc., Lond. B. 305: 451–477.

    Google Scholar 

  • Battarbee, R. W. & D. F. Charles, 1987. The use of diatom assemblages in lake sediments as a means of assessing the timing, trends, and cuases of lake acidification. Progress in Physical Geography 11: 552–580.

    Google Scholar 

  • Binford, M. W., 1990. Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. J. Paleolim. (in press).

  • Binford, M. W. & M. Brenner, 1986. Dilution of 210Pb by organic sedimentation in lakes of different trophic states, and application to studies of sediment-water interactions. Limnol. Oceanogr. 31: 584–595.

    Google Scholar 

  • Binford, M. W., M. Brenner, T. J. Whitmore, A. Higuera-Gundy, E. S. Deevey & B. Leyden, 1987. Ecosystems, paleoecology, and human disturbance in subtropical and tropical America. Quat. Sci. Rev. 6: 115–128.

    Google Scholar 

  • Binford, M. W., J. S. Kahl & S. A. Norton, in prep. 210Pb studies in PIRLA project lakes. J. Paleolim.

  • Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F.ter Braak, 1990. Diatoms and pH recomstruction. Phil. Trans. r. Soc., Lond. B. 327: 263–278.

    Google Scholar 

  • Brenner, M. & M. W. Binford, 1986. Material transfer from water to sediment in Florida lakes. Hydrobiologia 143: 55–61.

    Google Scholar 

  • Brenner, M., M. W. Binford & E. S. Deevey, 1990. Lakes. In: Myers, R. L. & J. J. Ewel (eds.), Ecosystems of Florida, Univ. Presses of Florida, Gainesville, FL., p. 252–270.

    Google Scholar 

  • Brezonik, P. L., C. D. Hendry, E. S. Edgerton, R. L. Schultz & T. L. Crisman, 1983. Acidity, nutrients, and minerals in atmospheric precipitation over Florida: deposition patterns, mechanisms and ecological effects. Environmental Protection Agency, Corvallis, Oregon, EPA-600/3–83–004, NTIS No. P8 83 165837, 170 p.

    Google Scholar 

  • Camburn, K. E., J. C. Kingston & D. F. Charles, 1986. PIRLA diatom iconograph. Report number 3, PIRLA Unpublished Report Series, Bloomington, IN. (53 photographic plates, 1059 figures.)

  • Canfield, D. E., 1983. Sensitivity of Florida lakes to acidic precipitation. Wat. Res. 19: 833–839.

    Google Scholar 

  • Carlisle, V. W., C. T. Hallmark, F. Sodek, R. E. Caldwell, L. C. Hammond & V. E. Berkheiser, 1981. Characterization Data for Selected Florida Soils. Soil Science Research Report Number 81–1, University of Florida, Gainesville, Florida, 305 p.

    Google Scholar 

  • Charles, D. F. & D. R. Whitehead (eds.), 1986. Paleoecological investigation of recent lake acidification, methods and project description. Report EPRI EA-4906. Project 2174–10, Electric Power Research Institute, Palo Alto, CA, U.S.A.

    Google Scholar 

  • Charles, D. F., M. W. Binford, E. T. Furlong, R. A. Hites, M. J. Mitchell, S. A. Norton, F. Oldfield, M. J. Paterson, J. P. Smol, A. J. Uutala, J. R. White, D. R. Whitehead & R. J. Wise, 1990. Paleolimnological evidence of recent acidification in the Adirondack Mountains, N.Y. J. Paleolim. (in press).

  • Charles, D. F., D. R. Whitehead, D. R. Engstrom, B. D. Fry, R. A. Hites, S. A. Norton, J. S. Owen, L. A. Roll, S. C. Schindler, J. P. Smol, A. J. Uutala, J. R. White & R. J. Wise, 1987. Paleolimnological evidence for recent acidification of Big Moose Lake, Adirondack Mountains, N.Y. (U.S.A.). Biogeochemistry 3: 267–296.

    Google Scholar 

  • Charles, D. F., D. R. Whitehead, D. S. Anderson, R. Bienert, K. E. Camburn, R. B. Cook, T. L. Crisman, R. B. Davis, J. Ford, B. D. Fry, R. A. Hites, J. S. Kahl, J. C. Kingston, R. G. Kreis, M. J. Mitchell, S. A. Norton, L. A. Roll, J. P. Smol, P. R. Sweets, A. J. Uutala, J. R. White, M. C. Whiting & R. J. Wise, 1986. The PIRLA Project (Paleoecological investigation of recent lake acidification): preliminary results for the Adriondacks, New England, N. Great Lakes States, and N. Florida. Wat. Air Soil Pollut. 30: 355–365.

    Google Scholar 

  • Clark, W. E., R. H. Musgrave, C. G. Menke & J. W. CagleJr., 1964. Water resources of Alachua, Bradford, Clay, and Onion counties, Florida. Florida Geological Survey, Report of Investigations. Report No. 35, Tallahassee, FL, U.S.A.

    Google Scholar 

  • Cook, R. B. & D. W. Schindler, 1983. The biogeochemistry of sulfur in an experimentally acidified lake. Env. Biogeochem. Ecol. Bull. (Stockholm) 35: 115–127.

    Google Scholar 

  • Davis, R. B., 1974. Stratigraphic effects of tubificids in profundal lake sediments. Limnol. Oceanogr. 19: 466–488.

    Google Scholar 

  • Davis, R. B. & D. S. Anderson, 1985. Methods of pH calibration of sedimentary diatom remains for reconstructing history of pH in lakes. Hydrobiologia 120: 69–87.

    Google Scholar 

  • Davis, R. B. & J. P. Smol, 1986. The use of sedimentary remains of siliceous algae for inferring past chemistry of lake water-problems, potential and research needs. In: Smol, J. P., R. W. Battarbee, R. B. Davis & J. Meriläinen (eds.), Diatoms and Lake Acidity, 291–300. Dr. W. Junk, Dordrecht, The Netherlands.

    Google Scholar 

  • Davis, R. B., D. S. Anderson & F. Berge, 1985. Loss of organic matter, a fundamental process in lake acidification: paleolimnological evidence. Nature 316: 436–438.

    Google Scholar 

  • Deevey, E. S.Jr., 1988. Estimation of downward leakage from Florida lakes. Linol. Oceanogr. 33: 1308–1320.

    Google Scholar 

  • Deevey, E. S., M. W. Binford, M. Brenner & T. J. Whitmore, 1986. Sedimentary records of accelerated nutrient loading in Florida lakes. Hydrobiologia 143: 49–53.

    Google Scholar 

  • Dixit, A. S., S. S. Dixit & R. D. Evans, 1988. The relationship between sedimentary diatom assemblages and lakewater pH in 35 Quebec lakes, Canada. J. Paleolim. 1: 23–28.

    Google Scholar 

  • Environmental Science and Engineering, Inc. (ESE), 1987. Florida acid deposition study. Five-year data summary. ESE No. 85-186-0106-2110. Gainesville, Florida.

  • Fernald, E. A., 1981. Atlas of Florida. Florida State University Press, Tallahassee.

    Google Scholar 

  • Fernald, E. A. & D. J. Patton, 1984. Water resources atlas of Florida. Florida State University Press, Tallahassee.

    Google Scholar 

  • Furlong, E. A., L. Roll-Cesar & R. A. Hites, 1987. Polycyclic aromatic hydrocarbons in PIRLA lake sediments. Geoch. Cosmochim. Acta. 51: 2965–2975.

    Google Scholar 

  • Garren, R. A., 1990. Watershed characteristics and recent history of PIRLA northern Florida core lakes. PIRLA Unpublished Report Series, Report Number 15, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL.

    Google Scholar 

  • Goldstein, R. A. & S. A. Gherini, 1984. The integrated lake-watershed acidification study, volume 4: summary of major results. Report EPRI EA-3221, Project 1109–5, Electric Power Research Institute, Palo Alto, California, U.S.A.

    Google Scholar 

  • Healy, H. G., 1975. Potentiometric surface and areas of artesian flow of the Florida Aquifer in Florida. Map Series, 73. Department of Natural Resources, Bureau of Geology, Tallahassee, FL.

    Google Scholar 

  • Heath, R. C. & C. S. Conover, 1981. Hydrologic Almanac of Florida, U.S. Geological Survey Open File Report 81-1107, Tallahassee, FL.

  • Hendry, D. D. & P. L. Brezonik, 1984. Chemical composition of softwater Florida lakes and their sensitivity to acid precipitation. Wat. Res. Bull. 20 (1): 75–86.

    Article  CAS  PubMed  Google Scholar 

  • Husar, R. B., 1990. Emissions of sulfur dioxide and nitrogen oxides and trends for eastern North America. In: Charles, D. F. (ed.), Acid Deposition and Aquatic Ecosystems: Regional Case Studies. Regional Case Studies Project, EPA.

  • Husar, R. B., 1986. Emissions of sulfur dioxide and nitrogen oxides and trends for eastern North America, pp. 48–92. In: Acid Deposition: Long Term Trends. National Research Council, National Academy Press, Washington, D.C.

    Google Scholar 

  • Hustedt, F. R., 1939. Systematische und ökologische Untersuchungen über die Diatomeen Flora von Java, Bali, und Sumatra nach dem Material der Deutschen Limnologischen Suda-Expedition III. Die ökologischen Faktoren und Ihr Einfluss auf die Diatomeenflora. Arch. Hydrobiol. Supp. 16: 274–394.

    Google Scholar 

  • Kelly, C. A. & J. W. M. Rudd, 1984. Epilimnetic sulfate reduction and its relationship to lake acidification. Biogeochemistry 1: 63–77.

    Google Scholar 

  • Kingston, J. C. & H. J. B. Birks, 1990. Dissolved organic carbon reconstructions from diatom assemblages in PIRLA project lakes, North America. Phil. Trans. r. Soc., Lon. B. 327: 279–288.

    Google Scholar 

  • Kingston, J. C., R. B. Cook, R. G. Kreis, Jr., K. E. Camburn, S. A. Norton, P. R. Sweets, M. W. Binford, M. J. Mitchell, S. C. Schindler, L. C. K. Shane & G. King, 1990. Paleoecological investigation of recent lake acidification in the Northern Great Lakes States. J. Paleolim. (in press).

  • Kreis, R. G., Jr., 1989. Variability study — interim results. Paleoecological Investigation of Recent Lake Acidification (PIRLA): 1983–1985. Electric Power Research Institute, EPRI EN-6526, Palo Alto, CA.

  • Krug, E. C. & C. R. Frink, 1983. Acid rain on acid soil: a new perspective. Science 221: 520–525.

    Google Scholar 

  • Kuhn, D. L., J. L. Plafkin, J. Cairns & R. L. Lowe, 1981. Qualitative characterization of aquatic environments using diatom life-form strategies. Trans. am. Microsc. Soc. 100: 165–182.

    Google Scholar 

  • LaZerte, B. & P. Dillon, 1984. Relative importance of anthropogenic versus natural sources of acidity in lakes and streams of central Ontario. Can. J. Fish. aquat. Sci. 41: 1664–1677.

    Google Scholar 

  • Leavitt, P. R. & S. R. Carpenter, 1989. Effects of sediment mixing and benthic algal production on fossil pigment stratigraphies. J. Paleolim. 2: 147–158.

    Google Scholar 

  • Likens, G. E., 1985. An ecosystem approach to aquatic ecology. Springer-Verlag, New York, U.S.A.

    Google Scholar 

  • Linthurst, R. A., D. H. Landers, J. M. Eilers, D. F. Brakke, W. S. Overton, E. P. Meier & R. E. Crowe, 1986. Characteristics of Lakes in the Eastern United States, Volume I. Population Descriptions and Physico-Chemical Relationships. EPA/600/4–86/007a, U.S. Environmental Protection Agency, Washington, D.C., 136 p.

    Google Scholar 

  • Lowe, R. L., 1974. Environmental requirements and pollution tolerance of freshwater diatoms. U.S. EPA, Environmental Monitoring Series, 670-4-74-005, Cincinnati, U.S.A.

  • Mitchell, M. J., J. S. Owen & S. S. Schindler, 1990. Factors affecting sulfur incorporation to sediments: paleoecological implications. J. Paleolim. (in press).

  • Mitchell, M. J., S. C. Schindler, J. S. Owen & S. A. Norton, 1988. Comparison of sulfur concentrations within lake sediment profiles. Hydrobiologia 157: 219–229.

    Google Scholar 

  • Norton, S. A., R. W. Bienert, Jr., M. W. Binford & J. S. Kahl, 1990. Stratigraphy of total metals in PIRLA cores. J. Paleolim. (in press).

  • Patrick, R., V. Binetti & S. G. Halterman, 1981. Acid lakes from natural and anthropogenic causes. Science 211: 446–448.

    Google Scholar 

  • Pillsbury, R. W. & J. C. Kingston, 1990. The pH-independent effect of aluminum on cultures of phytoplankton from an acidic Wisconsin lake. Hydrobiologia 194: 225–233.

    Google Scholar 

  • Pollman, C. D. & D. E. Canfield, 1990. Florida hydrologic and biogeochemical controls on seepage lake chemistry. In: Charles, D. F. (ed.), Acid Deposition and Aquatic Ecosystems: Regional Case Studies. Regional Case Studies Project, EPA.

  • Renberg, I. & T. Hellberg, 1982. The pH history of lakes in southwestern Sweden, as calculated from the subfossil diatom flora of the sediments. Ambio 11: 30–33.

    Google Scholar 

  • Rudd, J. W. M., 1987. Acidification of the Moose River system in the Adirondack Mountains of New York State. Biogeochemistry special issue. Nijhoff/Junk, Dordrecht, The Netherlands.

    Google Scholar 

  • Rudd, J. W. M., C. A. Kelly & A. Furutani, 1986. The role of sulfate reduction in long term accumulation of organic and inorganic sulfur in lake sediments. Limnol. Oceanogr. 31: 1281–1291.

    Google Scholar 

  • Schindler, D. W., 1988. Effects of acid rain on freshwater ecosystem. Science 239: 149–157.

    Google Scholar 

  • Smith, M. A., 1990. The ecophysiology of epilithic diatom communities of acid lakes in Galloway, southwest Scotland. Phil. Trans. r. Soc., Lond. B. 327: 251–256.

    Google Scholar 

  • Sweets, P. R., 1990. Diatom counts of northern Florida lake surface sediment samples and sediment core intervals. PIRLA Unpublished Report Series, Report Number 14, Department of Biology, Indiana University, Bloomington, IN.

    Google Scholar 

  • Sweets, P. R., 1983. Differential deposition of diatom frustules in Jellison Hill Pond, ME. MS Thesis, University of Maine, Orono, ME.

  • Sweets, P. R., R. A. Garren & R. G. Kreis, 1989. The relationship between surface sediment diatoms and pH in northern Florida. Paleoecological Investigation of Recent Lake Acidification (PIRLA): 1983–1985. Electric Power Research Institute, EPRI EN-6526, Palo Alto, CA.

  • ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Google Scholar 

  • ter Baak, C. J. F., 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69: 69–77.

    Google Scholar 

  • Watts, W. A. & B. C. S. Hansen, 1988. Environments of Florida in the late Wisconsin and Holocene. In: Purdy, B. (ed.), Wet Site Archaeology. Telford Press, Caldwell, NJ, U.S.A.: 307–323.

    Google Scholar 

  • Watts, W. A. & M. Stuiver, 1980. Late Wisconsin climate of northern Florida and the origins of species-rich deciduous forest. Science 210: 325–327.

    Google Scholar 

  • Whiting, M. C., D. R. Whitehead, R. W. Holmes & S. A. Norton, 1989. Paleolimnological reconstruction of the recent acidity changes in four Sierra Nevada lakes. J. Paleolim. 2: 285–304.

    Google Scholar 

  • Whitmore, T. J., 1989. Florida diatom assemblages as indicators of tropohic state and pH. Limnol. Oceanogr. 34: 882–895.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This is the tenth of a series of papers to be published by this journal which is a contribution of the Paleoecological Investigation of Recent Lake Acidification (PIRLA) project. Drs. D. F. Charles and D. R. Whitehead are guest editors for this series.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sweets, P.R., Bienert, R.W., Crisman, T.L. et al. Paleoecological investigations of recent lake acidification in northern Florida. J Paleolimnol 4, 103–137 (1990). https://doi.org/10.1007/BF00226320

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00226320

Key words

Navigation