Log in

The hair-peg organs of the shore crab, Carcinus maenas (Crustacea, Decapoda): Ultrastructure and functional properties of sensilla sensitive to changes in seawater concentration

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The hair-peg organs of the shore crab, Carcinus maenas, are modified hair-sensilla. A small hair shaft (peg) is surrounded by a tuft of solid cuticular bristles (hairs). Each hair-peg organ is innervated by 6 sensory neurons, 2 of which have “scolopidial” (type-I) dendrites. The outer segments of all dendrites pass through a cuticular canal extending to the articulated hair base in which the 2 type-I dendrites terminate. The other 4 (type-II) dendrites reach the clavate tip of the hair shaft and have access to a terminal pore and a large sickle-shaped aperture. Three inner and 8–12 outer envelo** cells belong to a hair-peg organ. The innermost envelo** cell contains a scolopale, which has desmosomal connections to the ciliary rootlets of the type-I dendrites. An inner and an outer sensillum lymph space are present. The ultrastructural features of the dendrites and the cuticular apparatus indicate that the hair-peg organs are bimodal sensilla, comprising 2 mechano- and 4 chemosensitive sensory neurons. Extracellular recordings from the leg nerve indicate that the chemosensitive neurons of the hair-peg organs respond to changes in seawater concentration in the physiological range of Carcinus maenas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altner H, Prillinger L (1980) Ultrastructure of invertebrate chemo-, thermo-, and hygroreceptors and its functional significance. Int Rev Cytol 67:69–139

    Google Scholar 

  • Altner H, Hatt H, Altner I (1986) Structural and functional properties of the mechanoreceptors and chemoreceptors in the anterior oesophageal sensilla of the crayfish, Astacus astacus. Cell Tissue Res 244:537–547

    Google Scholar 

  • Altner I, Hatt H, Altner H (1983) Structural properties of bimodal chemo- and mechanosensitive setae on the pereiopod chelae of the crayfish Austropotamobius torrentium. Cell Tissue Res 228:357–374

    Google Scholar 

  • Atwood HL (1963) Differences in muscle fibre properties as a factor in “fast” and “slow” contraction in Carcinus. Comp Biochem Physiol 10:17–32

    Google Scholar 

  • Bévengut M, Libersat F, Clarac F (1986) Dual locomotor activity selectively controlled by force- and contact-sensitive mechanoreceptors. Neurosci Lett 66:323–327

    Google Scholar 

  • Bocquet C, Cals P, Renaud B (1976) Ordonnance et variations locales des populations cellulaires épidermiques de Carcinus maenas (L.) (Crustacé Decapode). CR Acad Sci D (Paris) 283:349–351

    Google Scholar 

  • Bolt SRL, Naylor E (1985) Interaction of endogenous factors controlling locomotor activity rhythms in Carcinus exposed to tidal salinity cycles. J Exp Mar Biol Ecol 85:47–56

    Google Scholar 

  • Broekhuysen GJ (1936) On development, growth and distribution of Carcinus maenas (L). Arch Neerl Zool 2:257–399

    Google Scholar 

  • Bush BMH, Laverack MS (1982) Mechanoreception. In: Atwood HL, Sandeman DC (eds) The biology of Crustacea, Vol 3. Neurobiology: Structure and function. Academic Press, New York, pp 399–468

    Google Scholar 

  • Crouau Y (1978) Ultrastructure des phanères spinulés méchanorécepteurs d'un crustacé mysidacé souterrain anophthalme. CR Acad Sci D (Paris) 287:1215–1218

    Google Scholar 

  • Crouau Y (1982) Primary stages in the sensory mechanism of the setulate sensilla, external mechanoreceptors of a cavernicolous Mysidacea. Biol Cell 44:45–56

    Google Scholar 

  • Derby DC (1982) Structure and function of cuticular sensilla of the lobster Homarus americanus. J Crust Biol 2:1–21

    Google Scholar 

  • Derby CD, Atema J (1982) The function of chemo- and mechanoreceptors in lobster (Homarus americanus) feeding behaviour. J Exp Biol 98:317–328

    Google Scholar 

  • Drach P, Jacques F (1979) Système sétifère des Crustacés Décapodes. Le système microsétal. CR Acad Sci D (Paris) 288:1103–1105

    Google Scholar 

  • Espeel M (1985) Fine structure of the statocyst sensilla of the mysid shrimp Neomysis integer (Leach 1814) (Crustacea, Mysidacea). J Morphol 186:149–165

    Google Scholar 

  • Gnatzy W, Schmidt M, Römbke J (1984) Are the funnel-canal organs the “campaniform sensilla” of the shore crab Carcinus maenas (Crustacea, Decapoda)? I. Topography, external struc- ture and basic organization. Zoomorphology 104:11–20

    Google Scholar 

  • Grünert U, Ache BW (1988) Ultrastructure of the aesthetasc (olfactory) sensilla of the spiny lobster, Panulirus argus. Cell Tissue Res 251:95–103

    Google Scholar 

  • Hamilton KA (1983) A topographical and typological comparison of rodlike setae of ambulatory dactylopodites in decapod crustaceans. J Morphol 176:351–364

    Google Scholar 

  • Hamilton KA, Linberg KA, Case JF (1985) Structure of dactyl sensilla in the kelp crab, Pugettia producta. J Morphol 185:349–366

    Google Scholar 

  • Hanson FE (1987) Chemoreception in the fly: the search for the liverwurst receptor. In: Chapman RF, Bernays EA, Stoffolano JG (eds) Perspectives in chemoreception and behavior. Springer, Berlin Heidelberg New York, pp 99–122

    Google Scholar 

  • Hume RI, Berlind A (1976) Heart and scaphognathite rate changes in a euryhaline crab, Carcinus maenas, exposed to dilute environmental medium. Biol Bull 150:241–254

    Google Scholar 

  • Johnson BR, Voigt R, Borroni PF, Atema J (1984) Response properties of lobster chemoreceptors: tuning of primary taste neurons in walking legs. J Comp Physiol 155A:593–604

    Google Scholar 

  • Keil TA, Steinbrecht RA (1984) Mechanosensitive and olfactory sensilla of insects. In: King RC, Akai H (eds) Insect ultrastructure, Vol 2. Plenum, New York, pp 477–516

    Google Scholar 

  • Kouyama N, Shimozawa T (1982) The structure of a hair mechanoreceptor in the antennule of crayfish (Crustacea). Cell Tissue Res 226:565–578

    Google Scholar 

  • Krijgsman BJ, Krijgsman NE (1954) Osmorezeption in Jasus lalandii. Z Vergl Physiol 37:78–81

    Google Scholar 

  • Lagerspetz K, Mattila M (1961) Salinity reactions of some freshand brackish-water crustaceans. Biol Bull 120:44–53

    Google Scholar 

  • Laverack MS (1962a) Responses of cuticular sense organs of the lobster, Homarus vulgaris (Crustacea) — I. Hair-peg organs as water current receptors. Comp Biochem Physiol 5:319–325

    Google Scholar 

  • Laverack MS (1962b) Responses of cuticular sense organs of the lobster, Homarus vulgaris (Crustacea) — II. Hairfan organs as pressure receptors. Comp Biochem Physiol 6:137–145

    Google Scholar 

  • Laverack MS (1963) Responses of cuticular sense organs of the lobster, Homarus vulgaris (Crustacea) — II. Activity invoked in sense organs of the carapace. Comp Biochem Physiol 10:261–272

    Google Scholar 

  • Laverack MS (1975) Properties of chemoreceptors in marine crustacea. In: Denton DA, Coghlan JP (eds) Olfaction and taste V. Academic Press, New York, pp 141–146

    Google Scholar 

  • Leduc E, Bernhard W (1967) Recent modifications of the glycol methacrylate embedding procedure. J Ultrastruc Res 19:196–199

    Google Scholar 

  • Libersat F, Zill S, Clarac F (1987a) Single-unit responses and reflex effects of force-sensitive mechanoreceptors of the dactyl of the crab. J Neurophysiol 57:1601–1613

    Google Scholar 

  • Libersat F, Clarac F, Zill S (1987b) Force-sensitive mechanoreceptors of the dactyl of the crab: single-unit responses during walking and evaluation of function. J Neurophysiol 57:1618–1637

    Google Scholar 

  • Luther W (1930) Versuche über die Chemorezeption der Brachyuren. Z Vergl Physiol 12:177–205

    Google Scholar 

  • Mill PJ, Lowe DA (1973) The fine structure of the PD proprioceptor of Cancer pagurus. I. The receptor strand and the movement sensitive cells. Proc R Soc Lond [Biol] 184B:179–197

    Google Scholar 

  • Moulins M (1976) Ultrastructure of chordotonal organs. In: Mill PJ (ed) Structure and function of proprioceptors in the invertebrates. Chapman and Hall, London, pp 387–426

    Google Scholar 

  • Nation JL (1983) A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy. Stain Technol 58:347–351

    Google Scholar 

  • Pearson WH, Sugerman PC, Woodruff DL (1979) Thresholds for detection and feeding behavior in the Dungeness crab, Cancer magister (Dana). J Exp Mar Biol Ecol 39:65–78

    Google Scholar 

  • Romeis B (1968) Mikroskopische Technik. R Oldenburg, München

    Google Scholar 

  • Schmidt M, Gnatzy W (1984) Are the funnel-canal organs the campaniform sensilla of the shore crab, Carcinus maenas (Decapoda, Crustacea)? II. Ultrastructure. Cell Tissue Res 237:81–93

    Google Scholar 

  • Schmidt M, Gnatzy W (1986a) Die Büschelorgane der Strandkrabbe: Physiologie und Ultrastruktur eines cuticularen Rezeptors. Verh Dtsch Zool Ges 79:236

    Google Scholar 

  • Schmidt M, Gnatzy W (1986b) Contact chemoreceptors on the walking legs of the shore crab, Carcinus maenas. Chem Sens 11:657

    Google Scholar 

  • Schöne H, Steinbrecht RA (1968) Fine structure of statocyst receptor of Astacus fluviatilis. Nature 220:184–186

    Google Scholar 

  • Seelinger G (1983) Response characteristics and specificity of chemoreceptors in Hemilepistus reaumuri (Crustacea, Isopoda). J Comp Physiol 152A:219–229

    Google Scholar 

  • Seifert P (1982) Studies on the sex pheromone of the shore crab, Carcinus maenas, with special regard to ecdysone excretion. Ophelia 21:147–158

    Google Scholar 

  • Shelton RGJ, Laverack MS (1968) Observations on a redescribed crustacean cuticular sense organ. Comp Biochem Physiol 25:1049–1059

    Google Scholar 

  • Solon MH, Cobb JS (1980) The external morphology and distribution of cuticular hair organs on the claws of the American lobster, Homarus americanus (Milne-Edwards). J Exp Mar Biol Ecol 48:205–215

    Google Scholar 

  • Solon MH, Kass-Simon G (1981) Mechanosensory activity of hair organs on the chelae of Homarus americanus. Comp Biochem Physiol 68A:217–223

    Google Scholar 

  • Spencer M (1986) The innervation and chemical sensitivity of single aesthetasc hairs. J Comp Physiol 158A:59–68

    Google Scholar 

  • Sugarman PC, Pearson WH, Woodruff DL (1980) Detection thresholds and behavioral responses to salinity changes by the Dungeness crab, Cancer magister. Am Zool 20:922

    Google Scholar 

  • Taylor AC, Naylor E (1977) Entrainment of the locomotor rhythm of Carcinus by cycles of salinity change. J Mar Biol Assoc UK 57:273–277

    Google Scholar 

  • Tazaki K (1975) Sensory units responsive to osmotic stimuli in the antennae of the spiny lobster, Panulirus japonicus. Comp Biochem Physiol 51A:647–653

    Google Scholar 

  • Tazaki K, Tanino T (1973) Responses to osmotic concentration changes in the lobster antenna. Experientia 29:1090–1091

    Google Scholar 

  • Thomas NJ, Lasiak TA, Naylor E (1981) Salinity preference behaviour in Carcinus. Mar Behav Physiol 7:277–283

    Google Scholar 

  • Van der Wolk FM, Koerten HK, Van der Starre H (1984) The external morphology of contact-chemoreceptive hairs of flies and the motility of the tips of these hairs. J Morphol 180:37–54

    Google Scholar 

  • Van Weel PB, Christofferson JP (1966) Electrophysiological studies on perception in the antennulae of certain crabs. Physiol Zool 39:317–325

    Google Scholar 

  • Van Weel PB, Correa LH (1967) Electrophysiological responses in the antennulae of Thalamita crenata Latreille and Procambarus clarkii Girard to certain stimuli. Zool Jb Physiol 73:174–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft (SFB 45/A1; W. Gnatzy)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, M. The hair-peg organs of the shore crab, Carcinus maenas (Crustacea, Decapoda): Ultrastructure and functional properties of sensilla sensitive to changes in seawater concentration. Cell Tissue Res. 257, 609–621 (1989). https://doi.org/10.1007/BF00221472

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00221472

Key words

Navigation