Log in

Standardized nomenclature for Alu repeats

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Batzer MA, Deininger PL (1991) A human-specific subfamily of Alu sequences. Genomics 9:481–487

    Google Scholar 

  • Batzer MA, Kilroy GE, Richard PE, Shaikh TH, Desselle TD, Hoppens CL, Deininger PL (1990) Structure and variability of recently inserted Alu family members. Nucleic Acids Res 18:6793–6798

    Google Scholar 

  • Batzer MA, Gudi VA, Mena JC, Foltz DW, Herrera RJ, Deininger PL (1991) Amplification dynamics of Human-Specific (HS) Alu family members. Nucleic Acids Res 19:3619–3623

    Google Scholar 

  • Batzer MA, Stoneking M, Alegria-Hartman M, Bazan H, Kass DH, Shaikh TH, Novick GE, Ioannou PA, Scheer WD, Herrera RJ, Deininger PL (1994) African origin of human-specific polymorphic Alu insertions. Proc Natl Acad Sci USA 91:12288–12292

    Google Scholar 

  • Batzer MA, Arcot SS, Phinney JW, Alegria-Hartman M, Kass DH, Milligan SM, Kimpton C, Gill P, Hochmeister M, Ioannou PA, Herrera RJ, Boudreau DA, Scheer WD, Keats BJB, Deininger PL, Stoneking M (1996) Genetic variation of recent Alu insertions in human populations. J Mol Evol 42:22–29

    Google Scholar 

  • Batzer MA, Rubin CM, Hellman-Blumberg U, Alegria-Hartman M, Leeflang EP, Stern JD, Bazan HA, Shaikh TH, Deininger PL, Schmid CW (1995) Dispersion and insertion polymorphism in two small subfamilies of recently amplified human Alu repeats. J Mol Biol 247:418–427

    Google Scholar 

  • Blonden LAJ, Terwindt GM, Den Dunnen JT, Van Ommen G-JB (1994) A polymorphic STS in intron 44 of the dystrophin gene. Hum Genet 93:479–480

    Google Scholar 

  • Britten RJ (1994) Evidence that most human Alu sequences were inserted in a process that ceased about 30 million years ago. Proc Natl Acad Sci USA 91:6148–6150

    Google Scholar 

  • Britten RJ, Baron WF, Stout DB, Davidson EH (1988) Sources and evolution of human Alu repeated sequences. Proc Natl Acad Sci USA 85:4770–4774

    Google Scholar 

  • Britten RJ, Stout DB, Davidson EH (1989) The current source of human Alu retroposons is a conserved gene shared with Old World monkey. Proc Natl Acad Sci USA 86:3718–3722

    Google Scholar 

  • Deininger PL (1989) SINEs: short interspersed repeated DNA elements in higher eucaryotes. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 619–636

    Google Scholar 

  • Deininger PL, Batzer MA (1993) Evolution of retroposons. Evol Biol 27:157–196

    Google Scholar 

  • Deininger PL, Batzer MA (1995) SINE master genes and population biology. In: Maraia RJ (ed) The impact of short interspersed elements (SINEs) on the host genome. RG Landes, Georgetown, TX, pp 43–60

    Google Scholar 

  • Deininger PL, Slagel VK (1988) Recently amplified Alu family members share a common parental Alu sequence. Mol Cell Biol 8:4566–4569

    Google Scholar 

  • Deininger PL, Batzer MA, Hutchison III CA, Edgell MH (1992) Master genes in mammalian repetitive DNA amplification. Trends Genet 8:307–311

    Google Scholar 

  • Hammer MF (1994) A recent insertion of an Alu element on the Y chromosome is a useful marker for human population studies. Mol Biol Evol 11:749–761

    Google Scholar 

  • Hutchinson GB, Andrew SE, McDonald H, Goldberg YP, Graharn R, Rommens JR, Hayden MR (1993) An Alu element retroposition in two families with Huntington disease defines a new active Alu subfamily. Nucleic Acids Res 21:3379–3383

    Google Scholar 

  • Jurka J (1993) A new subfamily of recently retroposed Alu repeats. Nucleic Acids Res 21:2252

    Google Scholar 

  • Jurka J, Milosavljevic A (1991) Reconstruction and analysis of human Alu genes. J Mol Evol 32:105–121

    Google Scholar 

  • Jurka J, Smith T (1988) A fundamental division in the Alu family of repeated sequences. Proc Natl Acad Sci USA 85:4775–4778

    Google Scholar 

  • Kass DH, Aleman C, Batzer MA, Deininger PL (1994) Identification of a human specific Ala insertion in the Factor XIIB gene. Genetica 94:1–8

    Google Scholar 

  • Labuda D, Striker G (1989) Sequence conservation in Alu evolution. Nucleic Acids Res 17:2477–2491

    Google Scholar 

  • Leeflang EP, Liu W-M, Hashimoto C, Choudary PV, Schmid CW (1992) Phylogenetic evidence for multiple Alu source genes. J Mol Evol 35:7–16

    Google Scholar 

  • Matera AG, Hellmann U, Schmid CW (1990a) A transpositionally and transcriptionally competent Alu subfamily. Mol Cell Biol 10:5424–5432

    Google Scholar 

  • Matera AG, Hellmann U, Hintz MF, Schmid CW (1990b) Recently transposed Alu repeats result from multiple source genes. Nucleic Acids Res 18:6019–6023

    Google Scholar 

  • Muratani K, Hada T, Yamamoto Y, Kaneko T, Shigeto Y, Ohue T, Furuyama J, Higashino K (1991) Inactivation of the cholinesterase gene by Alu insertion: possible mechanism for human gene transposition. Proc Natl Acad Sci USA 88:1315–11319

    Google Scholar 

  • Okada N (1991) SINEs. Curr Opin Genet Dev 1:498–504.

    Google Scholar 

  • Perna NT, Batzer MA, Deininger PL, Stoneking M (1992) Alu insertion polymorphism: A new type of marker for human population studies. Hum Biol 64:641–648

    Google Scholar 

  • Quentin Y (1988) The Alu family developed through successive waves of fixation closely connected with primate lineage history. J Mol Evol 27:194–202

    Google Scholar 

  • Rogers J (1983) Retroposons defined. Nature 301:460

    Google Scholar 

  • Schmid CW, Maraia R (1992) Transcriptional regulation and transpositional selection of active SINE sequences. Curr Opin Genet Dev 2:874–882.

    Google Scholar 

  • Shen M-R, Batzer MA, Deininger PL (1991) Evolution of the master Alu gene(s). J Mol Evol 33:311–320

    Google Scholar 

  • Slagel V, Flemington E, Traina-Dorge V, Bradshaw H, Deininger PL (1987) Clustering and sub-family relationships of the Alu family in the human genome. Mol Biol Evol 14:19–29

    Google Scholar 

  • Stoppa-Lynnet D, Carter PE, Meo T, Tosi M (1990) Clusters of intragenic Alu repeats predispose the human C1 inhibitor locus to deleterious rearrangements. Proc Natl Acad Sci USA 87:1551–1555

    Google Scholar 

  • Ullu E, Murphy S, Melli M (1982) Human 7S RNA consists of a 140 nucleotide middle repetitive sequence inserted in an Alu sequence. Cell 29:195–202

    Google Scholar 

  • Vidaud D, Vidaud M, Bahnak BR, Siguret V, Sanchez SG, Laurin Y, Meyer D, Goossens M, Lavergne JM (1993) Hemophilia B due to a de novo insertion of a Human-Specific Alu subfamily member within the coding region of the factor IX gene. Eur J Hum Genet 1:30–36

    Google Scholar 

  • Wallace MR, Andersen LB, Sauhno AM, Gregory PE, Glover TW, Collins FS (1991) A de novo Alu insertion results in neurofibromatosis type 1. Nature 353:864–866

    Google Scholar 

  • Willard C, Nguyen HT, Schmid CW (1987) Existence of at least three distinct Alu subfamilies. J Mol Evol 26:180–186

    Google Scholar 

  • Zietkiewicz E, Richer C, Makalowski W, Jurka J, Labuda D (1994) A young Alu subfamily amplified independently in human and African great apes lineages. Nucleic Acids Res 22:5608–5612

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: M.A. Batzer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batzer, M.A., Deininger, P.L., Hellmann-Blumberg, U. et al. Standardized nomenclature for Alu repeats. J Mol Evol 42, 3–6 (1996). https://doi.org/10.1007/BF00163204

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00163204

Keywords

Navigation