Log in

The role of microorganisms in mobilization and fixation of phosphorus in sediments

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Cycling of phosphorus (P) at the sediment/water interface is generally considered to be an abiotic process. Sediment bacteria are assumed to play only an indirect role by accelerating the transfer of electron from electron donors to electron acceptors, thus providing the necessary conditions for redox-and pH-dependent, abiotic sorption/desorption or precipitation/dissolution reactions.

Results summarized in this review suggest that

  1. (1)

    in eutrophic lakes, sediment bacteria contain as much P as settles with organic detritus during one year

  2. (2)

    in oligotrophic lakes, P incorporated in benthic bacterial biomass may exceed the yearly deposition of bioavailable P several times

  3. (3)

    storage and release of P by sediment bacteria are redox-dependent processes

  4. (4)

    an appreciable amount of P buried in the sediment is associated with the organic fraction

  5. (5)

    sediment bacteria not only regenerate PO4, they also contribute to the production of refractory, organic P compounds, and

  6. (6)

    in oligotrophic lakes, a larger fraction of the P settled with organic detritus is converted to refractory organic compounds by benthic microorganisms than in eutrophic lakes.

From this we conclude that benthic bacteria do more than just mineralize organic P compounds. Especially in oligotrophic lakes, they also may regulate the flux of P across the sediment/water interface and contribute to its terminal burial by the production of refractory organic P compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barsdate, R. J., T. Fenchel & R. T. Prentki, 1974. Phosphorus cycle of model ecosystems: Significance for decomposer food chains and effect of bacterial grazers. Oikos 25: 239–251.

    Google Scholar 

  • Borsheim, K. Y., G. Bratbak & M. Heldal, 1990. Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy. Appl. envir. Microbiol. 56: 352–356.

    Google Scholar 

  • Boström, B., M. Jannson & C. Forsberg, 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 5–59.

    Google Scholar 

  • Boström, B., I. Ahlgen & R. Bell, 1985. Internal nutrient loading in a eutrophic lake reflected in seasonal variations of some sediment parameters. Verh. int. Ver. Limnol. 22: 3335–3339.

    Google Scholar 

  • Boström, B., 1985. The role of Microcystis colonies, its mucilage and associated bacteria, for nutrient fluxes from sediments to lake water. — A working hypothesis. In: M. Enell, W. Graneli & L.-A. Hansson (eds), Proc. 13th. Nordic Sump. on Sediments, Anneboda, Sweden: 6–8.

  • Boström, B., A.-K. Pettersson & I. Ahlgren, 1989. Seasonal dynamics of a cyanobacteria-dominated microbial community in surface sediments of a shallow, eutrophic lake. Aquat. Sci. 51: 153–178.

    Google Scholar 

  • Boström, B. & E. Törnblom, 1990. Bacterial production, heat production and ATP-turnover in shallow marine sediments. Termochim. Acta 172: 147–156.

    Google Scholar 

  • Brassard, P. & J. C. Auclair, 1984. Orthophosphate uptake rate constants are mediated by the 103–104 molecular weight fraction in Shield lakewater. Can. J. Fish. aquat. Sci. 41: 166–173.

    Google Scholar 

  • Bratbak, G., 1985. Bacterial biovolume and biomass estimations. Appl. envir. Microbiol. 49: 1488–1493.

    Google Scholar 

  • Bratback, H. & I. Dundas, 1984. Bacterial dry matter content and biomass estimations. Appl. envir. Microbiol. 48: 755–757.

    Google Scholar 

  • Currie, D. J. & J. Kalff, 1984. The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater. Limnol. Oceanogr. 29: 311–321.

    Google Scholar 

  • Deinema, M. H., L. H. A. Habets, J. Scholten, E. Turkstra & H. A. A. M. Webers, 1980. The accumulation of polyphosphate in Acinetobacter spp. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett. 9: 275–279.

    Google Scholar 

  • Einsele, W., 1936. Über die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See. Arch. Hydrobiol. 29: 664–686.

    Google Scholar 

  • Einsele, W. & H. Vetter, 1938. Untersuchungen über die Entwicklung der physikalischen und chemischen Verhältnisse im Jahreszyklus in einem mässig eutrophen See (Schleinsee bei Langenargen). Int. Revue ges. Hydrobiol. Hydrogr. 36: 285–324.

    Google Scholar 

  • Fenchel, T. & T. H. Blackburn, 1979. Bacteria and mineral cycling. Academic Press, London.

    Google Scholar 

  • Fleischer, S., 1983. Microbial phosphorus release during enhanced glycolysis. Naturwissenschaften 70: 415–416.

    Google Scholar 

  • Fleischer, S., 1986. Aerobic uptake of Fe(III)-precipitated phosphorus by microorganisms. Arch. Hydrobiol. 107: 269–277.

    Google Scholar 

  • Fricker, Hj., 1980. OECD Eutrophication program — Regional Project Alpine Lakes. Swiss Federal Board for Environmental Protection, Bern, Switzerland.

    Google Scholar 

  • Gächter, R. & J. Bloesch, 1985. Seasonal and vertical in the C:P ratio of suspended and settling seston of lakes. Hydrobiologia 128: 193–200.

    Google Scholar 

  • Gächter, R., 1987. Lake restoration. Why oxygenation and artificial mixing cannot substitute for a decrease in the external phosphorus loading. Schweiz. Z. Hydrol. 49: 170–185.

    Google Scholar 

  • Gächter, R. & A. Mares, 1985. Does settling seston release soluble reactive phosphorus in the hypolimnion of lakes? Limnol. Oceanogr. 30: 364–371.

    Google Scholar 

  • Gächter, R., J. S. Meyer & A. Mares, 1988. Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnol. Oceanogr. 33: 1542–1558.

    Google Scholar 

  • Gächter, R., A. Tessier, E. Szabo & R. Carignan, 1991. Measurements of total dissolved phosphorus in small volumes of iron-rich interstitial water. Aquatic Sciences (in Press).

  • Hayes, F. R. & J. E. Phillips, 1958. Lake water and sediment. IV. Radiophosphorus equilibrium with mud, plants, and bacteria under oxidized and reduced conditions. Limnol. Oceanogr. 3: 459–475.

    Google Scholar 

  • Hoffmeister, D., D. Weltin & W. Dott, 1990. Untersuchungen zur bakteriellen Phosphatelimninierung. II. Mitteilung: Physiologische Untersuchungen an Reinkulturen. Wasser, Abwasser, gwf. 131: 270–277.

    Google Scholar 

  • Hupfer, M. & D. Uhlmann, 1990. Phosphate immobilization by microorganisms in lake sediments. Sediment/Water Interactions 5th International Symposium. August 6–9, 1990. Uppsala.

  • Hupfer, M. & D. Uhlmann, 1991. Microbially mediated phosphorus exchange across the mud-water interface. Verh. int. Ver. Limnol. 24: 2999–3003.

    Google Scholar 

  • Jackson, T. A. & D. W. Schindler, 1975. The biochemistry of phosphorus in an experimental lake environment: evidence for the formation of humic-metal-phosphate complexes. Verh. int. Ver. Limnol. 19: 211–221.

    Google Scholar 

  • Jewell, W. L. J. & P. L. McCarty, 1968. Aerobic decomposition of algae and nutrient regeneration. Stanford Univ. Techn. Rep. 91.

  • Jones, J. G., M. J. L. G. Orlandi & B. M. Simon, 1979. A microbiological study of sediments from the Cumbrian lakes. J. Gen. Microbiol. 115: 37–48.

    Google Scholar 

  • Jordan, M. J., G. E. Likens & B. J. Peterson, 1985. Organic carbon budget. In: G. E. Likens (ed.). An Ecosystem Approach to Aquatic Ecology. Mirror Lake and its Environment. Springer-Verlag. ISBN 0-387-96106-2.

  • Kampfer, P., A. Eisenträger, V. Hergt & W. Dott, 1990. Untersuchungen zur bakteriellen Phosphatelimninierung. I. Mitteilung: Bakterienflora und bakterielles Phosphatspeicherungsvermögen in Abwasserreinigungsanlagen. Wasser, Abwasser gwf. 131: 156–164.

    Google Scholar 

  • Kulaev, I. S., 1979. The biochemistry of inorganic polyphosphates. Wiley.

  • Laczko, E., 1988. Abbau von planktischem Detritus in den Sedimenten voralpiner Seen: Dynamik der beteiligten Mikroorganismen und Kinetik des biokatalysierten Phosphoraustausches. Ph. D. Thesis Nr.8371, Eidgenössische Tech. Hochschule (ETH), Zürich, Switzerland.

    Google Scholar 

  • Lean, D. R. S., 1973a. Phosphorus dynamics in lake water. Science 179: 678–680.

    Google Scholar 

  • Lean, D. R. S., 1973b. Movements of phosphorus between its biologically important forms in lake water. J. Fish. Res. Bd. Can. 30: 1525–1536.

    Google Scholar 

  • Lean, D. R. S., 1984. Metabolic indicators for phosphorus limitation. Verh. int. Ver. Limnol. 22: 211–213.

    Google Scholar 

  • Lean, D. R. S. & F. H. Rigler, 1974. A test of the hypothesis that abiotic phosphate complexing influences phosphorus kinetics in the epilimnetic lake water. Limnol. Oceanogr. 19: 787–788.

    Google Scholar 

  • Lean, D. R. S. & E. White, 1983. Chemical and radiotracer measurements of phosphorus uptake by lake plankton. Can. J. Fish. aquat. Sci. 40: 147–155.

    Google Scholar 

  • Levine, S. N., 1975. A preliminary investigation of orthophosphate concentration and the uptake of orthophosphate by seston in two Canadian Shield lakes. MS. Thesis, University of Manitoba, pp. 151.

  • Levine, S. N. & D. W. Schindler, 1980. Radiochemical analysis of orthophosphate concentrations and seasonal changes in the flux of orthophosphate to seston in two Canadian Shield lakes. Can. J. Fish. aquat. Sci. 37: 479–487.

    Google Scholar 

  • Likens, G. E., 1985. The Lake-Ecosystem. In: G. E. Likens (ed.), An Ecosystem Approach to Aquatic Ecology. Mirror Lake and its Environment. Springer-Verlag. ISBN 0-387-96106-2.

  • Mortimer, C. H., 1941–1942. The exchange of dissolved substances between mud and water in lakes. 1 and 2. 3 and 4. J. Ecol. 29: 280–329; 30: 147–201.

    Google Scholar 

  • Mortimer, C. H., 1971. Chemical exchanges between sediments and water in the Great Lakes — speculations and probable regulatory mechanisms. Limnol. Oceanogr. 16: 387–404.

    Google Scholar 

  • Osgood, R. A., 1988. A hypothesis on the role of Aphanizomenon in translocating phosphorus. Hydrobiologia 169: 69–79.

    Google Scholar 

  • Planas, D., 1978. Phosphorus uptake rates in planktonic communities related to light gradient. Verh. int. Ver. Limnol. 20: 2731–2736.

    Google Scholar 

  • Psenner, R., R. Pucsko & M. Sager, 1984. Die Fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten. Arch. Hydrobiol./ Suppl. 70: 111–155.

    Google Scholar 

  • Psenner, R. & R. Pucsko, 1988. Phosphorus fractionation: advantages and limits of the method for the study of sediment P origins and interactions. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 43–59.

    Google Scholar 

  • Psenner, R., B. Boström, M. Dinka, K. Pettersson, R. Puckso & M. Sager, 1988. Sediment phosphorus group: Working group summaries and proposals for future research. 4. Fractionation of phosphorus in suspended matter and sediment. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 98–110.

    Google Scholar 

  • Redfield, A. C., B. H. Ketchum & F. A. Richards, 1963. The influence of organisms on the composition of sea water. In: M. N. Hill (ed.), The Sea, v. 2. Interscience: 26–77.

  • Riemann, B. & R. T. Bell, 1990. Advances in estimating bacterial biomass and growth in aquatic systems; Arch. Hydrobiol. 118: 385–402.

    Google Scholar 

  • Rigler, F. H., 1973. A dynamic view of the phosphorus cycle in lakes. In: E. J. Griffith, A. Beeton, J. M. Spencer & D. T. Mitchell (eds), Environmental Phosphorus Handbook. John Wiley & Sons: 539–572.

  • Shuter, B. J., 1978. Size dependence of phosphorus and nitrogen subsistence quotas in unicellular microorganisms. Limnol. Oceanogr. 23: 1248–1255.

    Google Scholar 

  • Sinke, A. J. C. & T. E. Cappenberg, 1988. Influence of bacterial processes on the phosphorus release from sediments in the eutrophic Loosdrecht Lakes, The Netherlands. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 5–13.

    Google Scholar 

  • Stöckli, A. P., 1985. Die Rolle der Bakterien bei der Regeneration von Nährstoffen aus Algenexkreten und Autolyseprodukten. Experimente mit gekoppelten, kontinuierlichen Kulturen. Ph. D. Thesis Nr. 7850, Eidgenössische Technische Hochschule (ETH) Zürich. 183 pp.

    Google Scholar 

  • Uhlmann, D. & H.-D. Bauer, 1988. A remark on microorganisms in lake sediments with emphasis on polyphosphate-accumulating bacteria. Int. Revue ges. Hydrobiol. 73: 703–708.

    Google Scholar 

  • Uhlmann, D., I. Röske, M. Hupfer & G. Ohms, 1990. A simple method to distinguish between polyphosphate and other phosphate fractions of activated sludge. Wat. Res. 24: 1355–1360.

    Google Scholar 

  • Vladstein, O., A. Jensen, Y. Olsen & H. Reinertsen, 1988. Growth and phosphorus status of limnetic phytoplankton and bacteria. Limnol. Oceanogr. 33: 489–503.

    Google Scholar 

  • Van Groenestijn, J. W., 1988. Accumulation and degradation of polyphosphate in Acinetobacter sp. Ph. D. Thesis, Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  • Vollenweider, R. A., 1974. A Manual on Methods for Measuring Primary Production in Aquatic Environments. IBP Handbook Nr. 12 ISBN 0-632-00531-9. 225 pp.

  • Wentzel, M. C., L. H. Lötter, R. E. Loewenthal & G. V. R. Marais, 1986. Metabolic behaviour of Acinetobacter spp. in enhanced biological phosphorus removal — a biochemical model. Water SA 12: 209–224.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology. Second Edition. Saunders College Publishing. ISBN 0-03-057931-9. 767 pp.

  • Williams, J. D. H., 1973. Phosphorus in the sediments of Okanagan mainstem lakes. Supplement report to task 121 report by B. E. St. John entitled ‘The limnogeology of the Okanagan mainstem lakes’ (not published).

  • Williams, J. D. H., T. P. Murphy & T. Mayer, 1976. Rates of accumulation of phosphorus forms in Lake Erie sediments. J. Fish. Res. Bd. Can. 33: 430–439.

    Google Scholar 

  • Wolf, G., 1986. Die Verteilung des partikulären Phosphors und sein Verhältnis zur Biomasse der Blaualge Oscillatoria limosa im Pelagial des Piburgersees. Diplomarbeit Universität Insbruck.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gächter, R., Meyer, J.S. The role of microorganisms in mobilization and fixation of phosphorus in sediments. Hydrobiologia 253, 103–121 (1993). https://doi.org/10.1007/BF00050731

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00050731

Key words

Navigation