Log in

Generalized Eulerian numbers and the topology of the Hessenberg variety of a matrix

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

Let A∈gl(n, C) and let p be a positive integer. The Hessenberg variety of degree p for A is the subvariety Hess(p, A) of the complete flag manifold consisting of those flags S 1 ⊂⋯⊂S n−1 in ℂn which satisfy the condition AS i S i+p ,for all i. We show that if A has distinct eigenvalues, then Hess(p, A) is smooth and connected. The odd Betti numbers of Hess(p, A) vanish, while the even Betti numbers are given by a natural generalization of the Eulerian numbers. In the case where the eigenvalues of A have distinct moduli, |λ1|<⋯<|λ1|, these results are applied to determine the dimension and topology of the submanifold of U(n) consisting of those unitary matrices P for which A 0=P -1 AP is in Hessenberg form and for which the diagonal entries of the QR-iteration initialized at A 0 converge to a given permutation of λ1n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammar, G. S. and Martin, C. F.: The geometry of matrix eigenvalue methods, Acta Applic. Math. 5 (1986), 239–278.

    Google Scholar 

  2. Ammar, G. S.: Geometric aspects of Hessenberg matrices, Contemp. Math. 68 (1987), 1–21.

    Google Scholar 

  3. Steinberg, R.: Desingularization of the unipotent variety, Invent. Math. 36 (1976), 209–224.

    Google Scholar 

  4. Springer, T. A.: A construction of representations of Weyl groups, Invent. Math. 44 (1978), 279–293.

    Google Scholar 

  5. Spaltenstein, N.: The fixed point set of a unipotent transformation on the flag manifold, Proc. Kon. akad. Wetensch. Amsterdam 79 (1978), 452–456.

    Google Scholar 

  6. Hotta, R. and Shimomura, N.: The fixed point subvarieties of unipotent transformations on generalized flag varieties and the Green functions-combinatorial and cohomological treatments centering GL(n), Math. Ann. 241 (1979), 193–208.

    Google Scholar 

  7. Shimomura, N.: A theorem on the fixed point set of a unipotent transformation on the flag manifold, J. Math. Soc. Japan 32 (1980), 55–64.

    Google Scholar 

  8. Spaltenstein, N.: Sous-groupes de Borel Contenant un Unipotent Donné, Lecture Notes in Math. 948, Springer, New York, 1982.

    Google Scholar 

  9. Shimomura, N.: The fixed point subvarieties of unipotent transformations on the flag varieties, J. Math. Soc. Japan 37 (1985), 537–556.

    Google Scholar 

  10. Helmke, U. and Shayman, M. A.: The biflag manifold and the fixed points of a unipotent transformation on the flag manifold, Linear Algebra Appl. 92 (1987), 125–159.

    Google Scholar 

  11. De Concini, C., Lusztig, G., and Procesi, C.: Homology of the zero-set of a nilpotent vector field on a flag manifold, J. Amer. Math. Soc. 1 (1988), 15–34.

    Google Scholar 

  12. Hiller, H.: The Geometry of Coxeter Groups, Pitman, London, 1982.

    Google Scholar 

  13. Foata, D.: Distributions Eulériennes et Mahoniennes sur le groupe des permutations, in M. Aigner (ed.), Higher Combinatorics, D. Reidel, Dordrecht, 1977.

    Google Scholar 

  14. Carlitz, L.: Eulerian numbers and polynomials of higher order, Duke Math. J. 27 (1960), 401–423.

    Google Scholar 

  15. Carlitz, L. and Scoville, R.: Generalized Eulerian numbers: combinatorial applications, J. Reine Angew. Math. 265 (1974), 110–137.

    Google Scholar 

  16. Dillon, J. and Roselle, D.: Eulerian numbers of higher order, Duke Math. J. 35 (1968), 247–256.

    Google Scholar 

  17. Lehmer, D.: Generalized Eulerian numbers, J. Combin. Theory Ser A 32 (1982), 195–215.

    Google Scholar 

  18. Rawlings, D.: The r-major index, J. Combin. Theory Ser. A 31 (1981), 175–183.

    Google Scholar 

  19. Stanley, R. P.: Enumerative Combinatorics, Vol I, Wadsworth and Brooks/Cole, Monterey, 1986.

    Google Scholar 

  20. Hermann, R.: Cartanian Geometry, Nonlinear Waves, and Control Theory, Part A, Math Sci Press, Brookline, 1979.

    Google Scholar 

  21. Shub, M. and Vasquez, A. T.: Some linearly induced Morse-Smale systems, the QR-algorithm and the Toda lattice, Contemp. Math. 64 (1987), 181–194.

    Google Scholar 

  22. Faibusovich, L. E.: Generalized Toda flows, Riccati equations on Grassmann manifolds and QR-algorithm, Functional Anal. Appl. 21 (1987), 88–89. (in Russian)

    Google Scholar 

  23. Smale, S.: Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817.

    Google Scholar 

  24. Golub, G. H. and Van Loan, C. F.: Matrix Computations, Johns Hopkins Univ. Press, Baltimore, MD, 1984.

    Google Scholar 

  25. Tits, J.: Théorème de Bruhat et sous-groupes paraboliques, C.R. Acad. Sci. Paris, 254 (1962) 2910–2912.

    Google Scholar 

  26. Shayman, M. A.: Phase portrait of the matrix Riccati equation, SIAM J. Control Optim. 24 (1986), 1–65.

    Google Scholar 

  27. Shayman, M. A.: Riccati equations, linear flows on the flag manifold, and the Bruhat decomposition, in C. I. Byrnes and A. Lindquist (eds.), Frequency Domain and State Space Methods for Linear Systems, North-Holland, Amsterdam, 1986.

    Google Scholar 

  28. Durfee, A. H.: Algebraic varieties which are a disjoint union of subvarieties, in C. McCrory and T. Shirfin (eds.), Geometry and Topology, Manifolds, Varieties and Knots, Dekker, New York, 1987.

    Google Scholar 

  29. Bialynicki-Birula, A.: Some theorems on actions of algebraic groups, Annals of Math. 98 (1973), 480–497.

    Google Scholar 

  30. Comtet, L.: Analyse Combinatoire, Vols I & II, Presses Univ. de France, Paris, 1970.

    Google Scholar 

  31. Riordan, J.: An Introduction to Combinatorial Analysis, Wiley, New York, 1958.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research partially supported by the National Science Foundation under Grant ECS-8696108.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Mari, F., Shayman, M.A. Generalized Eulerian numbers and the topology of the Hessenberg variety of a matrix. Acta Appl Math 12, 213–235 (1988). https://doi.org/10.1007/BF00046881

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00046881

AMS subject classifications (1980)

Key words

Navigation