Log in

A γ-hordein gene

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The 1614 bp nucleotide sequence of a barley gene encoding a γ-hordein endosperm storage polypeptide is presented. The deduced amino acid sequence is 305 amino acids long. It comprises a 19 amino acid signal peptide, an N-terminal half composed of proline-glutamine blocks organized in repeating units and a C-terminal half where the repeats are dispersed and less conserved. The deduced amino acid sequence shows strong homology to a γ-gliadin polypeptide from wheat and a γ-secalin polypeptide from rye and less homology to a B1 hordein polypeptide from barley. The 378 bp 5′ non-coding region contains a TATA box at-85, an AGGA sequence at-105 and a-300 element typical of prolamin storage protein genes. The transcript start is 56 bp upstream of the ATG codon and 30 bp downstream of the TATA box. The 318 bp 3′ non-coding region contains 2 putative polyadenylation signals, 76 and 132 bp downstream of the stop codon. γ-Hordein polypeptides are encoded by a small multigene family. The γ-hordein gene family is not part of the deleted chromosome 5 region, containing the Hor 2 locus, in the B hordein-deficient mutant hor 2ca. Two mRNA size classes of 1350 and 1450 nt are detectable in wild-type endosperms from 8 to 26 days after anthesis. The mutant hor 2ca contains as much γ-hordein mRNA as the wild type, whereas the B and C hordein-deficient mutant lys 3a contains barely detectable amounts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benton WD, Davis RW: Screening λgt recombinant clones by hybridization to single plaques in situ. Science 196: 180–182 (1977).

    Google Scholar 

  2. Berk AJ, Sharp PA: Sizing and map** of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell 12: 721–732 (1977).

    Google Scholar 

  3. Bietz JA, Huebner FR, Sanderson JE, Wall JS: Wheat gliadin homology revealed through N-terminal amino acid sequence analysis. Cereal Chem 54: 1070–1083 (1977).

    Google Scholar 

  4. Blake TK, Ullrich SE, Nilan RA: Map** of the Hor-3 locus encoding D hordein in barley. Theor Appl Genet 63: 367–371 (1982).

    Google Scholar 

  5. Brandt A, Ingversen J: Isolation and translation of hordein messenger RNA from wild type and mutant endosperms in barley. Carlsberg Res Commun 43: 451–469 (1978).

    Google Scholar 

  6. Brandt A, Montembault A, Cameron-Mills V, Rasmussen SK: Primary structure of a B1 hordein gene from barley. Carlsberg Res Commun 50: 333–345 (1985).

    Google Scholar 

  7. Burke JF: High-sensitivity S1 map** with single-stranded [32P] DNA probes synthesized from bacteriophage M13mp templates. Gene 30: 63–68 (1984).

    Google Scholar 

  8. Cameron-Mills V, Wettstein D von: Protein body formation in the develo** barley endosperm. Carlsberg Res Commun 45: 577–594 (1980).

    Google Scholar 

  9. Doll H: A hearly non-functional mutant allele of the storage protein locus Hor2 in barley. Hereditas 93: 217–222 (1980).

    Google Scholar 

  10. Entwistle JE: Primary structure of a C hordein gene from barley. Carlsberg Res Commun 53: 247–258 (1988).

    Google Scholar 

  11. Forde BG, Heyworth A, Pywell J, Kreis M: Nucleotide sequence of a B1 hordein gene and the identification of possible upstream regulatory elements in endosperm torage protein genes from barley, wheat and maize. Nucleic Acids Res 13: 7327–7339 (1985).

    Google Scholar 

  12. Hanahan D: Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557–580 (1983).

    Google Scholar 

  13. Heidecker G, Messing J: Structural analysis of plant genes. Ann Rev Plant Physiol 37: 439–466 (1986).

    Google Scholar 

  14. Heijne G von: Analysis of the distribution of charged residues in the N-terminal region of signal sequences: implications for protein export in prokaryotic and eukaryotic cells. EMBO J 3: 2315–2318 (1984).

    Google Scholar 

  15. Hopp HE, Rasmussen SK, Brandt A: Organization and transcription of B1 hordein genes in high lysine mutants of barley. Carlsberg Res Commun 48: 201–216 (1983).

    Google Scholar 

  16. Hu N-T, Messing J: The making of strand-specific M13 probes. Gene 17: 271–277 (1982).

    Google Scholar 

  17. Jensen J, Jørgensen JH, Jensen HP, Giese H, Doll H: Linkage of the hordein loci Hor1 and Hor2 with the powdery mildew resistance loci Ml-k and Ml-a on barley chromosome 5. Theor Appl Genet 58: 27–31 (1980).

    Google Scholar 

  18. Kreis M, Forde BG, Rahman S, Miflin BJ, Shewry PR: Molecular evolution of the seed storage proteins of barley, rye and wheat. J Mol Biol 183: 499–502 (1985).

    Google Scholar 

  19. Kreis M, Shewry PR, Forde BG, Forde J, Miflin BJ: Structure and evolution of seed storage proteins and their genes with particular reference to those of wheat, barley and rye. Oxford Surv Plant Mol Cell Biol 2: 253–317 (1985).

    Google Scholar 

  20. Kreis M, Shewry PR, Forde BG, Rahman S, Miflin BJ: Molecular analysis of a mutation conferring the high-lysine phenotype on the grain of barley (Hordeum vulgare). Cell 34: 161–167 (1983).

    Google Scholar 

  21. Kuhlemeier C, Fluhr R, Green PJ, Chua N-H: Sequences in the pea rbcS-3A gene have homology to constitutive mammalian enhancers but function as negative regulatory elements. Genes Dev 1: 247–255 (1987).

    Google Scholar 

  22. Loenen WAM, Blattner FR: Lambda Charon vectors (Ch32, 33, 34 and 35) adapted for DNA cloning in recombination-deficient hosts. Gene 26: 171–179 (1983).

    Google Scholar 

  23. Maier U-G, Brown JWS, Toloczyki C, Feix G: Binding of a nuclear factor to a consensus sequence in the 5′ flanking region of zein genes of maize. EMBO J 6: 17–22 (1987).

    Google Scholar 

  24. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  25. Netsvetaev VP: Location of a hordein G locus, Hrd G, on chromosome 5 of barley. Barley Genet Newslett 14: 4–6 (1984).

    Google Scholar 

  26. Netsvetaev VP, Sozinov AA: Linkage studies of genes Gle 1 and Hrd F in barley chromosome 5. Barley Genet Newslett 12: 13–18 (1982).

    Google Scholar 

  27. Payne PI, Holt LM, Jackson EA, Law CN: Wheat storage proteins: their genetics and their potential for manipulation by plant breeding. Phil Trans R Soc London Ser B 304: 359–371 (1984).

    Google Scholar 

  28. Pettersson M, Schaffner W: A purine-rich DNA sequence motif present in SV40 and lymphotropic papovavirus binds a lymphoid-specific factor and contributes to enhancer activity in lymphoid cells. Genes Dev 1: 962–972 (1987).

    Google Scholar 

  29. Rafalski JA: Structure of wheat gamma-gliadin genes. Gene 43: 221–229 (1986).

    Google Scholar 

  30. Rasmussen SK, Brandt A: Nucleotide sequences of cDNA clones for C-hordein polypeptides. Carlsberg Res Commun 51: 371–379 (1986).

    Google Scholar 

  31. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci (USA) 74: 5463–5467 (1977).

    Google Scholar 

  32. Schirm S, Jiricny J, Schaffner W: The SV40 enhancer can be dissected into multiple segments, each with a different cell type specificity. Genes Dev 1: 65–74 (1987).

    Google Scholar 

  33. Shewry PR, Faulks AJ, Pickering RA, Jones IT, Finch RA, Miflin BJ: The genetic analysis of barley storage proteins. Heredity 44: 383–389 (1980).

    Google Scholar 

  34. Shewry PR, Finch RA, Parmar S, Franklin J, Miflin BJ: Chromosomal location of Hor 3, a new locus governing storage proteins in barley. Heredity 50: 179–189 (1983).

    Google Scholar 

  35. Shewry PR, Kreis M, Parmar S, Lew EJ-L, Kasarda DD: Identification of γ-type hordeins in barley. FEBS Lett 190: 61–64 (1985).

    Google Scholar 

  36. Shewry PR, Parmar S, Fulrath N, Kasarda DD, Miller TE: Chromosomal locations of the structural genes for secalins in wild perennial rye (Secale montanum Guss.) and cultivated rye (S. cereale L.) determined by two-dimensional electrophoresis. Can J Genet Cytol 28: 76–83 (1986).

    Google Scholar 

  37. Shewry PR, Parmar S, Miflin BJ: Extraction, separation, and polymorphism of the prolamin storage proteins (secalins) of rye. Cereal Chem 60: 1–6 (1983).

    Google Scholar 

  38. Southern EM: Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517 (1975).

    Google Scholar 

  39. Tabor S, Richardson CC: DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci (USA) 84: 4767–4771 (1987).

    Google Scholar 

  40. Voss SD, Schlokat U, Gruss P: The role of enhancers in the regulation of cell-type-specific transcriptional control. Trends Biochem Sci 11: 287–289 (1986).

    Google Scholar 

  41. Wrigley CW, Shepherd KW: Electrofocusing of grain proteins from wheat genotypes. Ann N Y Acad Sci 209: 154–162 (1973).

    Google Scholar 

  42. Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119 (1985).

    Google Scholar 

  43. Zenke M, Grundström T, Matthes H, Wintzerith M, Schatz C, Wildeman A, Chambon P: Multiple sequence motifs are involved in SV40 enhancer function. EMBO J 5: 387–397 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cameron-Mills, V., Brandt, A. A γ-hordein gene. Plant Mol Biol 11, 449–461 (1988). https://doi.org/10.1007/BF00039026

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039026

Key words

Navigation