Log in

Bioavailability of different phosphorus forms in freshwater systems

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The recent literature on the bioavailability of different forms of P in freshwater systems is reviewed. Bioavailable P is defined as the sum of immediately available P and the P that can be transformed into an available form by naturally occurring processes. Methods used to estimate the bioavailable P pool, which vary between studies largely depending on the time perspective applied, are critically evaluated. Most studies on particulate P aim to determine the potentially available P pool. Potential bioavailability of particulate P is normally analysed in bioassays with algal yield determinations and the available P fraction is characterized from interpretations of results of sequential chemical extractions. NaOH-extractable P is in most studies the most algal-available P fraction. For soil samples and tributary water particulate matter, NaOH-P has often been found to be equal to algal extractable P. In other studies depletions of NaOH-P have accounted for the algal P uptake, but only a minor proportion of the fraction has been utilized. Organic P in lake water particulate matter and bed sediments of eutrophic lakes can also be algal-available to a significant extent.

Studies on the bioavailability of dissolved P have often been concerned with immediate availability, or the minimum amount of available P. Such studies need other types of experimental design and normally assays with radiotracers are used. Immediately available P is frequently found to be less than P chemically assessed as dissolved reactive P (DRP) at low (< 10 µg DRP·l-1) concentrations. However, immediate availability may also approach or exceed DRP concentrations, especially at higher concentrations. Potential bioavailability, assayed as for particulate P, may generally render higher bioavailability than P assayed as immediately available. Large fractions of dissolved P remain unutilized and are primarily found in the high molecular weight fraction of dissolved P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boers, P. C. M., J. W. Th. Bongers, A. G. Wisselo & Th. E. Cappenberg, 1984. Loosdrecht lakes restoration projekt: Sediment phosphorus distribution and release from the sediments. Verh. int. Ver. Limnol. 22: 842–847.

    Google Scholar 

  • Boström, B., 1984. Potential mobility of phosphorus in different types of lake sediment. Int. Revue ges. Hydrobiol. 69: 457–474.

    Google Scholar 

  • Boström, B., I. Ahlgren & R. Bell, 1985. Internal loading in a eutrophic lake, reflected in seasonal variations of some sediment parameters. Verh. int. Ver. Limnol. 22: 3335–3339.

    Google Scholar 

  • Boström, B., M. Jansson & C. Forsberg, 1982. Phosphorus release from lake sediments. Arch Hydrobiol. Beih. Ergebn. Limnol. 18: 5–59.

    Google Scholar 

  • Boström, B., J. M. Andersen, S. Fleischer & M. Jansson, 1988. Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170: 229–244.

    Google Scholar 

  • Broberg, B., 1985. Biological availability of different fractions of dissolved phosphorus in two natural waters: Algal assay experiments. Verh. int. Ver. Limnol. 22: 2898–2903.

    Google Scholar 

  • Broberg, O. & G. Persson, 1988. Particulate and dissolved phosphorus forms in freshwater: composition and analysis. Hydrobiologia 170: 61–90.

    Google Scholar 

  • Chang, S. C. & M. L. Jackson, 1957. Fractionation of soil phosphorus. Soil Sci. 84: 133–144.

    Google Scholar 

  • Cembella, A. D., J. A. Naval & P. J. Harrison, 1984. The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: A multidisciplinary perspective: Part 1. Crit. Rev. Microbiol. 10: 317–391.

    Google Scholar 

  • Chamberlain W. & J. Shapiro, 1969. On the biological significance of phosphate analysis; comparison of standard and new methods with a bioassay. Limnol. Oceanogr. 14: 921–927.

    Google Scholar 

  • Chu, S. P., 1946. The utilization of organic phosphorus by phytoplankton. J. mar. biol. Ass. UK 26: 285–295.

    Google Scholar 

  • Cowen, W. F. & G. F. Lee, 1976. Phosphorus availability in particulate materials transported by urban runoff. J. Wat. Pollut. Cont. Fed. 48: 580–591.

    Google Scholar 

  • Dillon, P. J. & R. A. Reid, 1981. The input of biological available phosphorus by precipitation to precambrian lakes. In S. Eisenreich (ed.), Atmospheric pollutants in natural waters. Ann Arbor Science Publishers Inc., Ann Arbor: 183–198.

    Google Scholar 

  • Dobolyi, E., 1980. Identification of different phosphorus forms and their role in the eutrophication process of Lake Balaton. In J. Barica & L. R. Mur (eds). Hypertrophic ecosystems, Developments in Hydrobiology 2: 13–22.

  • Downes, M. T. & H. W. Paerl, 1978. Separation of two dissolved reactive phosphorus fractions in lake water. J. Fish Res. Bd Can. 35: 1636–1639.

    Google Scholar 

  • Eisenreich, S. J. & D. E. Armstrong, 1977. Chromatographic investigation of inositol phosphate esters in lake waters. Envir. Sci. Technol. 11: 497–501.

    Google Scholar 

  • Eisenreich, S. J. & D. E. Armstrong, 1980. Association of organic matter, iron and inorganic phosphorus in lake waters. Envir. International 3: 485–490.

    Google Scholar 

  • Fitzgerald, G. P., 1970. Evaluation of the availability of sources of nitrogen and phosphorus for algae. J. Phycol. 6: 239–247.

    Google Scholar 

  • Fleischer, S., 1983. Microbial P release during enhanced glycolysis. Naturwissenschaften 70: 415.

    Google Scholar 

  • Francko, D. A. & R. T. Heath, 1979. Functionally distinct classes of complex phosphorus compounds in lake water. Limnol. Oceanogr. 24: 463–473.

    Google Scholar 

  • Fuhs, G. W., S. D. Demmerle, E. Canelli & M. Chem, 1972. Characterization of phosphorus limited algae. In G. Likens (ed.), Nutrients and eutrophication, Limnol. Oceanogr. Spec. Symp. 1: 113–133.

  • Furumai, H. & S. Oghaki, 1982. Fractional composition of phosphorus in sediments related to release. Wat. Sci. Techn. 14: 215–226.

    Google Scholar 

  • Golterman, H. L., 1977. Sediments as a source for algal growth. In H. L. Golterman (ed.), Interactions between sediments and freshwater. Dr W. Junk, The Hague: 286–293.

    Google Scholar 

  • Golterman, H. L., 1984. Sediments, modifying and equilibrating factors in the chemistry of freshwater. Verh. int. Ver. Limnol. 22: 23–59.

    Google Scholar 

  • Hanna, M. & A. Dauta, 1983. Bioassays: A comparative study of three parameters related to phosphorus bioavailability. Ann. Limnol. 19: 59–66.

    Google Scholar 

  • Herbes, S. E., H. E. Allen & K. H. Mancy, 1975. Enzymatic characterization of soluble organic phosphorus in lake water. Science 187: 432–434.

    Google Scholar 

  • Hieltjes, A. H. & L. Lijklema, 1980. Fractionation of inorganic phosphates in calcareous lakes. J. environ. Qual. 9: 405–407.

    Google Scholar 

  • Hooper, F. F., 1973. Origin and fate of organic phosphorus compounds in aquatic systems. In E. J. Griffith, A. Beeton, J. M. Spencer & D. T. Mitchell (eds), Environmental phosphorus handbook. J. Wiley & Sons, NY: 179–201.

    Google Scholar 

  • Hosomi, M., M. Okada & R. Sudo, 1981. Release of phosphorus from sediments. Ver. int. Ver. Limnol. 21: 628–633.

    Google Scholar 

  • Huettl, P. J., R. C. Wendt & R. B. Corey, 1979. Prediction of algal-available phosphorus in runoff suspensions. J. environ. Qual. 8: 130–132.

    Google Scholar 

  • Ihlenfeldt, M. J. A. & J. Gibson, 1975. Phosphate utilization and alkaline phosphatase activity in Anacystis nidulans (Synechococcus). Arch. Microbiol. 102: 23–28.

    Google Scholar 

  • Jackson, T. A. & D. W. Schindler, 1975. The biogeochemistry of phosphorus in an experimental lake environment: Evidence for the formation of humic-metal-phosphate complexes. Verh. int. Ver. Limnol. 19: 211–221.

    Google Scholar 

  • Jansson, M., 1977. Enzymatic release of phosphate in water from subarctic lakes in northern Sweden. Hydrobiologia 56: 175–180.

    Google Scholar 

  • Jordan, C. & P. Dinsmore, 1985. Determination of biologically available phosphorus using a radiobioassay technique. Freshwat. Biol. 15: 597–603.

    Google Scholar 

  • Kauppi, L. & M. Niemi, 1984. The role of runoff water phosphorus in eutrophication. Publications of the Water Research Institute, National Board of Waters, Finland, No. 57.

    Google Scholar 

  • Keenan, J. D. & M. T. Auer, 1974. The influence of phosphorus luxury uptake on algal bioassays. J. Wat. Pollut. Cont. Fed. 46: 532–542.

    Google Scholar 

  • Kobori, H. & N. Taga, 1979. Phosphatase activity and its role in the mineralization of organic phosphorus in coastal sea water. J. exp. mar. Biol. Ecol. 36: 23–29.

    Google Scholar 

  • Koenings, J. P. & F. F. Hooper, 1976. The influence of colloidal organic matter on iron-phosphorus cycling in an acid bog lake. Limnol. Oceanogr. 21: 684–696.

    Google Scholar 

  • Kotai, J., T. Krogh & O. Skulberg, 1978. The fertility of some Norwegian inland wates assayed by algal cultures. Mitt. int. Ver. Limnol. 21: 413–436.

    Google Scholar 

  • Lean, D. R. S., 1973. Movements of phosphorus between its biologically important forms in lake water. J. Fish Res. Bd Can. 30: 1525–1536.

    Google Scholar 

  • Lean, D. R. S. & C. Nalewajko, 1976. Phosphate exchange and organic phosphorus excretion by freshwater algae. J. Fish Res. Bd. Can. 33: 1312–1223.

    Google Scholar 

  • Lean, D. R. S. & F. R. Pick, 1981. Photosynthetic response of lake plankton to nutrient enrichment: a test for nutrient limitation. Limnol. Oceanogr. 26: 1001–1019.

    Google Scholar 

  • Lee, G. F., R. A. Jones & W. Rast, 1980. Availability of phosphorus to phytoplankton and its implications for phosphorus management strategies. In R. C. Loehr, C. S.Martin & W.Rast (eds), Phosphorus management strategies for lakes, Ann Arbor Sci. Ann Arbor: 259–308.

    Google Scholar 

  • Lee, G. F., W. C. Sonzogni & R. D. Spear, 1977. Significance of oxie vs anoxic conditions for Lake Mendota sediment phosphorus release. In H. L. Golterman (ed.), Interactions between sediments and freshwater. Dr W. Junk, The Hague: 294–306.

    Google Scholar 

  • Levine, S. W. & D. W. Schindler, 1980. Radiochemical analysis of orthophosphate concentrations and seasonal changes in the flux of orthophosphate to seston in two Canadian shield lakes. Can. J. Fish. aquat. Sci. 37: 479–487.

    Google Scholar 

  • Logan, T. J., 1982. Mechanisms for release of sediment-bound phosphate to water and the effects of agricultural land management on fluvial transport of particulate and dissolved phosphate. Hydrobiologia 92: 519–530.

    Google Scholar 

  • Logan, T. J., T. O. Oloya & S. M. Yaksich, 1979. Phosphate characteristics and bioavailability of suspended sediments from streams draining into Lake Erie. J. Great Lakes Res. 5: 112–123.

    Google Scholar 

  • Long, E. T. & G. D.Cooke, 1978. Phosphorus variability in three streams during storm events: Chemical analysis vs. algal assay. Mitt. int. Ver. Limnol. 21: 441–452.

    Google Scholar 

  • Marengo, G. & G. Premazzi, 1985. Biological availability of P-loads to Lake Lugano. Verh. int. Ver. Limnol. 22: 3351–3355.

    Google Scholar 

  • Minear, R. A., 1972. Characterization of naturally occurring dissolved organo-phosphorus compounds. Envir. Sci. Technol. 6: 431–437.

    Google Scholar 

  • Nürnberg, G. R. & H. Peters, 1984. Biological availability of soluble reactive phosphorus in anoxic and oxic freshwaters. Can. J. Fish. aquat. Sci. 41: 757–765.

    Google Scholar 

  • OECD, 1982. Eutrophication of waters. Monitoring, assessment and control. OECD publications, Paris, 154 pp.

    Google Scholar 

  • Olsson, H. & M. Jansson, 1984. Stability of dissolved 32P-labelled phosphorus compounds in lake water and algal cultures — resistance to enzymatic treatment and algal uptake. Verh. int. Ver. Limnol. 22: 200–204.

    Google Scholar 

  • Overbeck, J., 1962. Untersuchungen zum phosphathaushalt von Grünalgen. II Die Verwertung von Pyrophosphat und organisch gebundenen Phosphaten un ihre Beziehung zu den Phosphatasen von Scenedesmus quadricauda (Turp.) Bréb. Arch. Hydrobiol. 58: 281–308.

    Google Scholar 

  • Paerl, H. W. & M. T. Downes, 1978. Biological availability of low versus high molecular weight reactive phosphorus. J. Fish Res. Bd Can. 35: 1639–1643.

    Google Scholar 

  • Peters, R. H., 1977. Availability of atmospheric orthophosphate. J. Fish Res. Bd Can. 34: 918–924.

    Google Scholar 

  • Pettersson, K., Jacobsen, O. S. & B. Boström, 1988. Phosphorus in sediments: speciation and analysis. Hydrobiologia 170: 91–101.

    Google Scholar 

  • Premazzi, G. & G. Zanon, 1984. Availability of sediment P in Lake Lugano. Verh. int. Ver. Limnol. 22: 1113–1118.

    Google Scholar 

  • Rhee, G. Y., 1973. A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. J. Phycol. 9: 495–506.

    Google Scholar 

  • Rigler, F. H., 1966. Radiobiological analysis of inorganic phosphorus in lakewater. Verh. int. Ver. Limnol. 16: 465–470.

    Google Scholar 

  • Sagher, A., 1976. Availability of soil runoff phosphorus to algae. Ph. D. thesis, University of Wisconsin-Madison, University microfilms international no. 76–29935, Ann Arbor, 176 pp.

  • Shapiro, J., 1967. Induced rapid release and uptake of phosphate by microorganisms. Science 155: 1269–1271.

    Google Scholar 

  • Sonzogni, W. C., S. C. Chapra, D. E.Armstrong & T. J.Logan, 1982. Bioavailability of phosphorus inputs to lakes. J. environ. Qual. 11: 555–563.

    Google Scholar 

  • Stainton, M. P., 1980. Errors in molybdenum blue methods for determining orthophosphate in freshwater. Can. J. Fish. aquat. Sci. 37: 472–478.

    Google Scholar 

  • Stauffer, R. E., 1985. Relationships between phosphorus loading and trophic state in calcareous lakes of southeast Wisconsin. Limnol. Oceanogr. 30: 123–145.

    Google Scholar 

  • Stevens, R. J. & B. M. Stewart, 1982. Concentration, fractionation and characterization of soluble organic phosphorus in river water entering Lough Neagh. Wat. Res. 16: 1507–1519.

    Google Scholar 

  • Taft, J. L., M. E. Loftus & W. R. Taylor, 1977. Phosphate uptake from phosphomonoesters by phytoplankton in the Chesapeake Bay. Limnol. Oceanogr. 22: 1012–1021.

    Google Scholar 

  • Tarapchak, S. J. & C. Rubitschun, 1981. Comparisons of soluble reactive phosphorus and orthophosphorus concentrations at an offshore station in southern Lake Michigan. J. Great Lakes Res. 7: 290–298.

    Google Scholar 

  • Tarapchak, S. J., D. R. Slavens & L. M. Maloney, 1981. Abiotic versus biotic uptake of radiophosphorus in lake water. Can. J. Fish. aquat. Sci. 38: 889–895.

    Google Scholar 

  • Twinch, A. J. & C. M. Breen, 1982. A comparison of nutrient availability measured by chemical analysis and calculated from bioassay yields. Hydrobiologia 94: 247–255.

    Google Scholar 

  • USEPA, 1969. Provisional algal assay procedure. Joint Industry/Government Task Force on Eutrophication, NY.

    Google Scholar 

  • USEPA, 1971. Algal assay procedure: Bottle test. National Eutrophication Research Program. Corvallis, Oregon.

    Google Scholar 

  • Walton, C. P. & C. F. Lee, 1972. A biological evaluation of the molybdenum blue method for orthophosphate analysis. Verh. int. Ver. Limnol. 18: 676–684.

    Google Scholar 

  • White, E. & G. Payne, 1980. Distribution and biological availability of reactive high molecular weight phosphorus in natural waters in New Zeeland. Can. J. Fish. aquat. Sci. 37: 664–669.

    Google Scholar 

  • Williams, J. D. H., J.-M. Jaquet & R. L. Thomas, 1976. Forms of phosphorus in the surficial sediments of Lake Erie. J. Fish. Res. Board Can. 33: 413–429.

    Google Scholar 

  • Williams, J. D. H., H. Shear & R. L. Thomas, 1980. Availability to Scenedesmus quadricauda of different forms of phosphorus in sedimentary materials from the Great Lakes. Limnol. Oceanogr. 25: 1–1.

    Google Scholar 

  • Young, T. C. & J. V. DePinto, 1982. Algal-availability of particulate phosphorus from diffuse and point sources in the lower Great Lakes basin. Hydrobiologia 91: 111–119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boström, B., Persson, G. & Broberg, B. Bioavailability of different phosphorus forms in freshwater systems. Hydrobiologia 170, 133–155 (1988). https://doi.org/10.1007/BF00024902

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00024902

Key words

Navigation