Log in

From pollination to fertilization in fruit trees

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The phase that elapses from pollination to fertilization is re-examined giving special attention to pollen pistil interaction in compatible matings. Pollination induces an activation of the pistil. A number of changes take place in the different tissues of this organ that appear to support male gametophyte development and to assist fertilization. Thus pollination induces stigma secretion, the release of starch from the transmitting tissue and prolongs embryo sac viability. It appears that even those pollen grains that do not achieve fertilization have a synergistic role supporting others to do so.

The pistil also has an effect on pollen tube growth. Pollen tube growth along the pistil is not continuous, accelerations and decelerations take place depending on the different tissues they traverse. The fact that pollen tube growth is heterotrophic, at the expenses of the pistil reserves, and that these reserves are not continuously produced confers the pistil with a role controlling pollen tube growth kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbeloa A and Herrero M (1987a) The significance of the obturator in the control of pollen tube entry into the ovary in peach (Prunus persica). Ann Bot 60: 681–685

    Google Scholar 

  2. Arbeloa A and Herrero M (1987b) Germinación y difusión de proteínas del polen de melocotonero. ITEA 69: 47–53

    Google Scholar 

  3. Barendse GWM, Rodrigues Pereira AS, Berkers PA, Driessen FM, van Eyden-Emons A and Linskens HF (1970) Growth hormones in pollen, styles and ovaries of Petunia hybrida and Lilium species. Acta Bot Neerl 19: 175–186

    Google Scholar 

  4. Brewbaker JL and Majumder SK (1961) Cultural studies of the pollen population effect and the self-incompatibility inhibition. Amer J Bot 48: 457–464

    Google Scholar 

  5. Buchholz JT and Blakeslee AF (1927) Pollen tube growth at various temperatures. Amer J Bot 14: 358–369

    Google Scholar 

  6. Deurenberg JJM (1976) Activation of protein synthesis in ovaries from Petunia hybrida after compatible and incompatible pollination. Acta Bot Neerl 25: 221–226

    Google Scholar 

  7. Dheim MA and Browning G (1987) The mode of action of (2RS, 3RS)-paclobutrazol on the fruit set of Doyenne du Comice pear. J Hort Sci 62: 313–327

    Google Scholar 

  8. Donk JAWMvan der (1974) Synthesis of RNA and protein as a function of time and type of pollen tube-style interaction in Petunia hybrida L. Mol Gen Gen 134: 93–98

    Google Scholar 

  9. Fitting H (1909) Die Beeinflussung der Orchideenblüten durch die Bestandung und durch andere Umstände. Zeit für Bot 1: 1–86

    Google Scholar 

  10. Fuller GL and Leopold AC (1975) Pollination and the timing of fruit set in cucumber. HortSci 10: 617–619

    Google Scholar 

  11. Gustafson FG (1936) Inducement of fruit development by growth promoting chemicals. Proc Nat Acad Sci USA 22: 626–636

    Google Scholar 

  12. Hepher A and Boulter ME (1987) Pollen tube growth and fertilization efficiency in Salpiglosis sinuata: Implications for the involvement of chemotropic factors. Ann Bot 60: 595–601

    Google Scholar 

  13. Herrero M and Arbeloa A (1989) Influence of the pistil on pollen tube kinetics in peach (Prunus persica). Amer J Bot 76: 1441–1447

    Google Scholar 

  14. Herrero M, Arbeloa A and Gascon M (1988) Pollen pistil interaction in the ovary in fruit trees. In: M Cresti, P Gori and E Pacini, eds. Sexual Reproduction in Higher Plants, 297–302. Berlin: Springer

    Google Scholar 

  15. Herrero M and Dickinson HG (1979) Pollen-pistil incompatibility in Petunia hybrida: changes in the pistil following compatible and incompatible intraspecific crosses. J Cell Sci 36: 1–18

    PubMed  Google Scholar 

  16. Herrero M. and Dickinson H.G. (1980). Pollen tube growth following compatible and incompatible intraspecific pollinations in Petunia hybrida. Planta 148: 217–221

    Google Scholar 

  17. Herrero M and Dickinson HG (1981) Pollen tube development in Petunia hybrida following compatible and incompatible intraspecific matings. J Cell Sci 47: 365–383

    PubMed  Google Scholar 

  18. Herrero M and Gascón M (1987) Prolongation of embryo sac viability in pear (Pyrus communis) following pollination or treatment with gibberellic acid. Ann Bot 60: 287–294

    Google Scholar 

  19. Heslop-Harrison J and Heslop-Harrison Y (1985) Surfaces and secretions in the pollen-stigma interaction: A brief review. J Cell Sci Supl 2: 287–300

    Google Scholar 

  20. Heslop-Harrison J (1983) Self-incompatibility: Phenomenology and physiology. Proc Roy Soc Lond Ser B Biol Sci 218: 371–395

    Google Scholar 

  21. Heslop-Harrison Y, Heslop-Harrison J and Reger BJ (1985) The pollen-stigma interaction in the grasses. 7. Pollen tube guidance and the regulation of tube number in Zea mays L. Acta Bot Neerl 34: 193–211

    Google Scholar 

  22. Jensen WA, Ashton ME and Beasley CA (1983) Pollen tube-embryo sac interaction in cotton. In: DL Mulcahy and E Ottaviano, eds. Pollen Biology and Implications for Plant Breeding, 67–72. New York: Elsevier Biomedical

    Google Scholar 

  23. Johnson LEB, Wilcoxson RD and Frosheirser FI (1975) Transfer cells in tissues of the reproductive system of alfalfa. Can J Bot 53: 952–956

    Google Scholar 

  24. Juel HO (1918) Beiträge zur Blütenanatomie und zur Sysstematik der Rosaceen. Kungliga Svenska Vetenskapsakademiens Handlingar. 58: 5.

    Google Scholar 

  25. Kamienska A and Pharis RP (1975) Endogenous gibberellins of pipe pollen. II. Changes during germination of Pinus attenuata, P. coulteri and P. ponderosa pollen. Pl Physiol 56: 655–659

    Google Scholar 

  26. Kenrick J and Knox RB (1981) Post-pollination exudate from stigmas of Acacia (Mimosaceae). Ann Bot 48: 103–106

    Google Scholar 

  27. Know RB (1984) The pollen grain. In: BM Johri, ed. Embryology of Angiosperms, 197–261. Berlin: Springer

    Google Scholar 

  28. Labarca C and Loweus F (1973) The nutritional role of pistil exudate in pollen tube wall formation in Lilium longiflorum. II. Production and utilization of exudate from stigma and stylar canal. Pl Physiol 52: 87–92

    Google Scholar 

  29. Linskens HF (1953) Physiologische und chemische Unterschiede zwischen selbst- und tremdbertaübten Petunien-Griffeln. Naturwiss 40: 28–29

    Google Scholar 

  30. Linskens HF (1986) Recognition during the programic phase. In: M Cresti and R Dallai, eds. Biology of Reproduction and Cell Motility in Plants and Animals, 21–32. Siena: University of Siena.

    Google Scholar 

  31. Lombard DB, Williams RR, Stott KG and Jefferies JC (1972) Temperature effects on pollen tube growth in styles of William's pear with a note on pollination deficiencies of Comice pear. Compte Rendu Symposium Culture du Poirier: 265–280

  32. Lord EM and Kohorn LU (1986) Gynoecial development, pollination and the path of pollen tube growth in the tepary bean Phaseolus acutifolius. Amer J Bot 73: 70–78

    Google Scholar 

  33. Martin GC, Romani RJ, Weinbaum SA, Nishijima C and Marshack J (1980) Abscisic acid and polysome content at anthesis and shortly after anthesis in pollinated, nonpollinated, and non-pollinated ‘Winter Nelis’ pear flowers treated with gibberellic acid. J Amer Soc Hort Sci 105: 318–321

    Google Scholar 

  34. Mascarenhas JP (1975) The biochemistry of the angiosperm pollen development. Bot Rev 41: 259–314

    Google Scholar 

  35. Mulcahy DL (1979) The rise of angiosperm: A genecological factor. Science 206: 20–23

    Google Scholar 

  36. Mulcahy GB and Mulcahy DL (1983) A comparison of pollen tube growth in bi- and trinucleate pollen. In: DL Mulcahy and E Ottaviano, eds. Pollen Biology and Implications for Plant Breeding, 29–33. New York: Elsevier Biomedical

    Google Scholar 

  37. Mulcahy GB and Mulcahy DL (1987) Induced pollen tube directionality. Amer J Bot 74: 1458–1459

    Google Scholar 

  38. Nitsch JP (1952) Plant hormones in the development of fruits. Quart Rev Biol 27: 33–57

    Article  PubMed  Google Scholar 

  39. Peterson RL, Scott MG and Miller SL (1979) Some aspects of carpel structure in Caltha palustris L. (Ranunculacaea). Amer J. Bot 66: 334–342

    Google Scholar 

  40. Pimienta E and Polito VS (1983) Embryo sac development in almond as affected by cross-, self- and non-pollination. Ann Bot 51: 469–479

    Google Scholar 

  41. Rosen WG (1964) Chemotropism and fine structure of pollen tubes. In: HF Linskens, ed. Pollen Physiology and Fertilization, 159–166. Amsterdam: North-Holland.

    Google Scholar 

  42. Sedgley M and Buttrose MS (1979) Anatomy of watermelon embryo sacs following pollination, non-pollination or parthenocarpic induction of fruit development. Ann Bot 43: 141–146

    Google Scholar 

  43. Sedgley M and Scholefield PB (1980) Stigma secretion in watermelon before and after pollination. Bot Gaz 141: 428–434

    Article  Google Scholar 

  44. Tilton VR and Horner HTJr (1980) Stigma, style and obturator of Ornithogalum caudatum (Liliaceae) and their function in the reproductive process. Amer J Bot 67: 1113–1131

    Google Scholar 

  45. Tilton VR and Lersten NR (1981) Ovule development in Ornithogalum caudatum (Liliaceae) with a review of selected papers on angiosperm reproduction. III. Nucellus and megagametophyte. New Phytol 88: 477–504

    Google Scholar 

  46. Tilton VR, Wilcox LW, Palmer RG and Albertsen MC (1984) Stigma, style and obturator of soybean, Glycine max L. Herr. (Leguminoseae) and their function in the reproductive process. Amer J Bot 71: 676–686

    Google Scholar 

  47. Tupy J (1961) Changes in glucose and fructose level in Nicotiana alata styles and ovaries accompanying compatible-pollen tube growth. Biol Plant 3: 1–14

    Google Scholar 

  48. Vasil IK (1974) The histology and physiology of pollen germination and pollen tube growth on the stigma and in the style. In: HF Linskens, ed. Fertilization in Higher Plants, 105–118. Amsterdam: North-Holland

    Google Scholar 

  49. Vithanage HIMV (1984) Pollen-stigma interactions: Development and cytochemistry of stigma papillae and their secretion in Annona squamosa L. (Annonaceae). Ann Bot 54: 153–167

    Google Scholar 

  50. Welk SM, Millington WF and Rosen WG (1965) Chemotropic activity and the pathway of the pollen tube in lily. Amer J Bot 52: 774–780

    Google Scholar 

  51. Went JVvan and Willemsen MTM (1984) Fertilization. In: BN Johri, ed. Embryology of Angiosperms, 273–317. Berlin: Springer

    Google Scholar 

  52. Williams RR (1970) Techniques used in fruit set experiments. In: RR Williams and D Wilson, eds. Towards Regulated Crop**, 57–61. London: Grower

    Google Scholar 

  53. Williams RR (1965) The effect of summer nitrogen applications on the quality of apple blossom. J Hort Sci 40: 31–41

    Google Scholar 

  54. Willson MF and Burley N (1983) Mate Choice in Plants: Tactics, Mechanisms, and Consequences. Princeton: Princeton University Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrero, M. From pollination to fertilization in fruit trees. Plant Growth Regul 11, 27–32 (1992). https://doi.org/10.1007/BF00024429

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00024429

Keywords

Navigation