Log in

Scales of disturbance and their role in plankton ecology

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The role of hydraulic and hydrographic disturbances in delaying, arresting or diverting successional sequences from achieving stable, climactic equilibria is discussed by reference to case studies. The critical time scale is expressed in terms of planktonic reproductive generation times. Environmental constancy persisting over some 12–16 generations may permit a climactic condition to be achieved. An Intermediate Disturbance, if sustained, can establish a new successional sequence or, if not, can lead to a reversion to a sequence similar to the predisturbance succession. At intervals of ∼ 1 generation time, species are selected according to their ability to accommodate disturbances at the physiological level. Highly disturbed environments are considered to be likely to maintain ‘plagioclimactic’ associations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allanson, B. R. & R. C. Hart, 1979. Limnology of P. K. Le Roux Dam. Reports, Rhodes University Institute for Freshwater Studies 11: 1–3.

    Google Scholar 

  • Berger, C., 1975. Occurrence of Oscillatoria agardhii Gomont in some shallow eutrophic lakes. Verh. int. Ver. Limnol. 19: 2687–2697.

    Google Scholar 

  • Connell, J. H., 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310.

    Google Scholar 

  • Ferguson, A. J. D. & D. M. Harper, 1982. Rutland Water phytoplankton: the development of an asset or a nuisance? In D. M. Harper & J. A. Bullock (eds), Rutland Water — Decade of change. Developments in Hydrobiology 8. Dr W. Junk Publishers, The Hague: 117–133. Reprinted from Hydrobiologia 88.

    Google Scholar 

  • Ganf, G. G., 1974. Diurnal mixing and the vertical distribution of phytoplankton in a shallow equatorial lake (Lake George, Uganda). J. Ecol. 62: 611–629.

    Google Scholar 

  • Gaedeke, A & U. Sommer, 1986. The influence of the frequency of periodic disturbances on the maintenance of phytoplankton diversity. Oecologia 71: 98–102.

    Article  Google Scholar 

  • Gibson, C. E. & A. G. Fitzsimmons, 1982. Periodicity and morphology of planktonic blue-green algae in an unstratified lake (Lough Neagh, Northern Ireland). Int. Revue ges. Hydrobiol. 62: 459–471.

    Google Scholar 

  • Gibson, C. E., R. B. Wood, E. L. Dickson & M. Jensen, 1971. The succession of phytoplankton in L. Neagh, 1968–1970. Mitt. int. Ver. Limnol. 19: 146–160.

    Google Scholar 

  • Grime, P., 1979. Plant strategies and vegetation processes. Wiley-Intescience, Chichester.

    Google Scholar 

  • Grygierek, E. & B. Wasilewska, 1979. Regulation of fishpond biocoenoses. Special Publications of the European Mariculture Society 4: 317–333.

    Google Scholar 

  • Haffner, G. D., G. P. Harris & M. K. Jarai, 1980. Physical variability and phytoplankton communities. III. Vertical structure in phytoplankton populations. Arch. Hydrobiol. 89: 363–381.

    Google Scholar 

  • Hamilton, S. K. & W. M. Lewis, 1990. Basin morphology in relation to chemical and ecological characteristics of lakes on the Orinoco River floodplain, Venezuela. Arch. Hydrobiol. 119: 393–425.

    Google Scholar 

  • Hardin, G., 1960. The competitive exclusion hypothesis. Science. 131: 1292–1297.

    PubMed  Google Scholar 

  • Holzmann, R., 1993. Seasonal fluctuations in the diversity and compositional stability of phytoplankton communities in small lakes in upper Bavaria. In J. Padisák, C. S. Reynolds & U. Sommer (eds), Intermediate Disturbance Hypothesis in Phytoplankton Ecology. Developments in Hydrobiology 81. Kluwer Academic Publishers, Dordrecht: 101–109. Reprinted from Hydrobiologia 249.

    Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of the plankton. Am. Nat. 95: 137–147.

    Article  Google Scholar 

  • Ibelings, B. W., L. R. Mur & A. E. Walsby, 1991. Diurnal changes in buoyancy and vertical distribution in populations of Microcystis in two shallow lakes. J. Plankton Res. 13: 419–436.

    Google Scholar 

  • Joint, I. R. & A. J. Pomroy, 1981. Primary production in a turbid estuary. Estuar. coast. mar. Sci. 13: 303–316.

    Google Scholar 

  • Juhász-Nagy, P., 1993. Notes on compositional diversity. In J. Padisák, C. S. Reynolds & U. Sommer (eds), Intermediate Disturbance Hypothesis in Phytoplankton Ecology. Developments in Hydrobiology 81. Kluwer Academic Publishers, Dordrecht: 173–182. Reprinted from Hydrobiologia 249.

    Google Scholar 

  • Kilham, P. & S. S. Kilham, 1980. The evolutionary ecology of phytoplankton. In I. Morris (ed.), The physiological ecology of phytoplankton. Blackwell Scientific Publications, Oxford: 571–597.

    Google Scholar 

  • Kimmel, B. L. & O. T. Lind, 1972. Factors affecting phytoplankton production in a eutrophic reservoir. Arch. Hydrobiol. 71: 124–141.

    Google Scholar 

  • Kořínek, V., J. Fott, J. Fuksa, J. Lellák & M. Pržáková, 1987. Carp ponds of Central Europe. In R. G. Michael (ed.), Managed Aquatic Ecosystems. Elsevier, Amsterdam: 29–62.

    Google Scholar 

  • Lewis, W. M., 1978. Dynamics and succession of the phytoplankton in a tropical lake: Lake Lanao, Philippines. J. Ecol. 66: 849–880.

    Google Scholar 

  • Lindholm, T., 1982. Dynamics of hydrography and primary production in three stratified coastal lakes on Åland (S. W. Finland). Acta Academia Aboensis B 42: 1–75.

    Google Scholar 

  • Lund, J. W. G., 1949. Studies on Asterionella. I. The origin and nature of the cells producing seasonal maxima. J. Ecol. 37: 389–419.

    Google Scholar 

  • Lund, J. W. G. & C. S. Reynolds, 1982. The development and operation of large limnetic enclosures in Blelham Tarn, English Lake District and their contribution to phytoplankton ecology. In F. E. Round & D. J. Chapman (eds), Progress in Phycological Research Vol. I. Elsevier, Amsterdam: 1–65.

  • Margalef, R., 1961. Communication of structure in planktonic populations. Limnol. Oceanogr. 6: 124–128.

    Google Scholar 

  • Odum, E. P., 1969. The strategy of ecosystem development. Science 164: 262–270.

    PubMed  Google Scholar 

  • Pennington, W., 1969. The history of the British vegetation. English Universities Press, London.

    Google Scholar 

  • Peterson, R., 1975. The paradox of the plankton: an equilibrium hypothesis. Am. Nat. 109: 35–49.

    Article  Google Scholar 

  • Pickett, S. T. A., J. Kolasa, J. J. Armesto & S. L. Collins, 1989. The ecological concept of disturbance and its expression at various hierarchical levels. Oikos 54: 129–136.

    Google Scholar 

  • Pollingher, U., 1988. Freshwater armoured dinoflagellates: growth, reproduction strategies and population dynamics. In C. D. Sandgren (ed.), Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, New York: 134–174.

    Google Scholar 

  • Price, P. W., 1984. Alternative paradigms in community ecology. In P. W. Price, C. N. Slobodchikoff & W. S. Gaud (eds), A new ecology: novel approaches to interactive systems. Wiley-Interscience, New York: 353–383.

    Google Scholar 

  • Priscu, J. C., W. F. Vincent & C. Howard-Williams, 1989. Inorganic nitrogen uptake and regeneration in perennially ice-covered Lakes Fryxell and Vanda, Antarctica. J. Plankton Res. 11: 335–351.

    Google Scholar 

  • Reynolds, C. S., 1976. The ecology of phytoplankton in Shropshire and Cheshire meres. Report Freshwater Biological Association 44: 36–45.

    Google Scholar 

  • Reynolds, C. S., 1980. Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarct. Ecol. 3: 141–159.

    Google Scholar 

  • Reynolds, C. S., 1984. Phytoplankton periodicity: the interaction of form, function and environmental variability. Freshwater. Biol. 14: 111–142.

    Google Scholar 

  • Reynolds, C. S., 1987a. Community organization in the freshwater phytoplankton. In J. H. R. Gee & P. S. Giller (eds), The organization of communities, past and present. Blackwell Scientific Publications, Oxford: 297–325.

    Google Scholar 

  • Reynolds, C. S., 1987b. Cyanobacterial Water Blooms. In J. Calow (ed.), Advances in botanical research, Vol. 13. Academic Press, London: 67–143.

    Google Scholar 

  • Reynolds, C. S. 1987c. The response of phytoplankton communities to changing lake environments. Schweiz. Z. Hydrol. 49: 220–236.

    Google Scholar 

  • Reynolds, C. S., 1988a. The theory of ecological succession applied to the freshwater phytoplankton. Verh. int. Ver. Limnol. 23: 683–691.

    Google Scholar 

  • Reynolds, C. S., 1988b. Functional morphology and the adaptive strategies of freshwater phytoplankton. In C. D. Sandgren (ed.), Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, New York: 388–433.

    Google Scholar 

  • Reynolds, C. S., 1988c. Potamoplankton: paradigms, paradoxes, prognoses. In F. E. Round (ed.), Algae and the aquatic environment. Biopress, Bristol: 285–311.

    Google Scholar 

  • Reynolds, C. S., 1989. Relationships among the biological properties, distribution and regulation of production by planktonic Cyanobacteria. Toxicity Assessment 4: 229–255.

    Google Scholar 

  • Reynolds, C. S., 1991. Lake Communities: an approach to their management for conservation. In I. F. Spellerberg, M. G. Morris & F. B. Goldsmith (eds), The scientific management of temperature communities for conservation. Blackwell Scientific Publications, Oxford: 199–225.

    Google Scholar 

  • Reynolds, C. S. & J. W. G. Lund, 1988. Thephytoplankton of an enriched, soft-water lake subject to intermittent hydraulic flushing (Grasmere, English Lake District). Freshwat. Biol. 19: 379–404.

    Google Scholar 

  • Reynolds, C. S., V. Montecino, M.-E. Graf & S. Cabrera, 1986. Short-term dynamics of a Melosira population in the plankton of an impoundment in central Chile. J. Plankton Res. 8: 715–740.

    Google Scholar 

  • Reynolds, C. S., J. G. Tundisi & K. Hino, 1983. Observations on a metalimnetic Lyngbya population in a stably stratified tropical lake (Lagoa Carioca, Eastern Brasil). Arch. Hydrobiol. 97: 7–17.

    Google Scholar 

  • Reynolds, C. S., S. W. Wiseman & M. J. O. Clarke, 1984. Growth- and loss-rate responses of phytoplankton to intermittent artificial mixing and their potential application to the control of planktonic algal biomass. J. appl. Ecol. 21:: 11–39.

    Google Scholar 

  • Richerson, P., R. Armstrong & C. R. Goldman, 1970. Contemporaneous disequilibrium, a new hypothesis to explain the paradox of the plankton. Proc natn. Acad. Sci. USA 67: 1710–1714.

    Google Scholar 

  • Round, F. E., 1971. The growth and succession of algal populations in freshwaters. Mitt. int. Ver. Limnol. 19: 70–99.

    Google Scholar 

  • Smayda, T. J. 1980. Phytoplankton species succession. In I. Morris (ed.), The physiological ecology of phytoplankton. Blackwell Scientific Publications, Oxford: 493–570.

    Google Scholar 

  • Sommer, U., 1985. Comparisons between steady state and non-steady state competition: experiments with natural phytoplankton. Limnol. Oceanogr. 30: 335–346.

    Google Scholar 

  • Sommer, U., 1986. The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of Central Europe. In M. Munawar & J. F. Talling (eds), Seasonality of Freshwater Phytoplankton — a Global Perspective. Developments in Hydrobiology 33. Dr W. Junk Publishers, Dordrecht: 1–7. Reprinted from Hydrobiologia 138.

    Google Scholar 

  • Sommer, U., 1989. The role of competition for resources in phytoplankton succession. In U. Sommer (ed.), Plankton ecology. Springer-Verlag, Berlin: 57–106.

    Google Scholar 

  • Sommer, U., 1993. Disturbance-diversity relationships in two lakes of similar nutrient chemistry but contrasting disturbance regimes. Hydrobiologia 249: 59–65.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in freshwaters. Arch. Hydrobiol. 106: 433–471.

    Google Scholar 

  • Tallis, J. H., 1973. The terrestrialization of lake basins in north Cheshire, with special reference to the development of a ‘Schwingmoor’ structure. J. Ecol. 61: 537–567.

    Google Scholar 

  • Tansley, A. G., 1939. The British Isles and their vegetation. Cambridge University Press, Cambridge.

    Google Scholar 

  • Tilman, D., 1982. Resource competition and community structure. Princeton University Press, Princeton.

    Google Scholar 

  • Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton community ecology: the role of limiting nutrients. Ann. Rev. Ecol. Syst. 13: 349–372.

    Article  Google Scholar 

  • Trimbee, A. M. & G. P. Harris, 1983. Use of time-series analysis to demonstrate advection rates of different variables in a small lake. J. Plankton Res. 5: 819–833.

    Google Scholar 

  • Tundisi, J. G., 1980. Ecológia aquática no Brasil: problemas e perspectives. Interciencia 5: 373–379.

    Google Scholar 

  • Uhlmann, D., 1971. Influence of dilution, sinking and grazing rate on phytoplankton populations of hyperfertilized ponds and microecosystems. Mitt. int. Ver. Limnol. 19: 100–124.

    Google Scholar 

  • Vicente, E. & M. R. Miracle, 1988. Physicochemical and microbial stratification in a meromictic karstic lake of Spain. Verh. int. Ver. Limnol. 23: 522–529.

    Google Scholar 

  • Vincent, W. F., 1981. Production strategies in Antarctic inland waters: phytoplankton eco-physiology in a permanently ice-covered lake. Ecology 62: 1215–1224.

    Google Scholar 

  • Vincent, W. F., P. J. Neale & P. J. Richerson, 1984. Photoinhibition: algal responses to bright sunlight during diel stratification and mixing in a tropical alpine lake. J. Phycol. 20: 201–211.

    Article  Google Scholar 

  • Vincent, W. F. & C. L. Vincent, 1982. Factors controlling phytoplankton production in Lake Vanda (77°S). Can J. Fish. aquat. Sci. 39: 1602–1609.

    Google Scholar 

  • Vollenweider, R. A., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. ital. Idrobiol. 33: 53–83.

    Google Scholar 

  • Whitehead, P. G. & G. M. Hornberger, 1984. Modelling algal behaviour in the River Thames. Wat. Res. 18: 945–953.

    Article  Google Scholar 

  • Zohary, T. & R. D. Robarts, 1989. Diurnal mixed layers and the long-term dominance of Microcystis aeruginosa. J. Plankton Res. 11: 25–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, C.S. Scales of disturbance and their role in plankton ecology. Hydrobiologia 249, 157–171 (1993). https://doi.org/10.1007/BF00008851

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008851

Key words

Navigation