Log in

Nitrogen dynamics in the Westerschelde estuary (SW Netherlands) estimated by means of the ecosystem model MOSES

  • Modelling
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A tentative nitrogen budget for the Westerschelde (SW Netherlands) is constructed by means of a simulation model with thirteen spatial compartments. Biochemical and chemical processes in the water column are dynamically modeled; fluxes of dissolved constituents across the water-bottom interface are expressed by means of diagenetic equations.

The model is calibrated on a large amount of observed variables in the estuary (1980–1986) with relatively fine temporal and spatial detail. Additional constraints are imposed by the stoichiometric coupling of carbon, nitrogen and oxygen flows and the required conservation of mass. The model is able to reproduce rather well the observed distributions of nitrate, ammonium, oxygen and Kjeldahl nitrogen both in time and space. Also, model output of biochemical oxygen demand and total organic carbon falls within observed ranges.

By far the most pervasive process in the nitrogen cycle of the estuary is nitrification which mainly takes place in the water column of the upper estuarine part. On average about three times as much nitrate is leaving the estuary at the sea side compared to what enters from the river and from waste discharges. Ammonium on the other hand is consumed much faster (nitrification) than it is regenerated and only about one third of the total import leaves the estuary at the sea side. The budget for detrital nitrogen reveals import from the river, from wastes and from the sea. Phytoplankton uptake of inorganic nitrogen is negligible in the model.

About 21% of total nitrogen, 33% of inorganic nitrogen, is removed from the estuary (mainly to the atmosphere through denitrification) and the load of nitrogen net exported to the sea amounts to about 51 000 tonnes per year. Total denitrification in our model is lower than what was estimated in the literature from the late seventies, where a nitrogen removal up to 40–50% of the total inorganic load was reported. Part of the differences could be methodological, but inspection of the nutrient profiles that led to these conclusions show them to be different to the ones used in our study. The oxygen deficient zone has moved upstream since the late seventies, entrailing the zone of denitrification into the riverine part of the Schelde. The nitrification process now starts immediately upon entering the estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Billen, G., 1982. Modelling the processes of organic matter degradation and nutrient recycling in sedimentary systems. In D. B. Nedwell & C. M. Brown (eds), Sediment microbiology. Academic Press, New York: 15–52.

    Google Scholar 

  • Billen, G. & J. Smitz, 1976. Modele mathematique de la qualite de l'eau dans un estuaire partiellement stratifie. In La mecanique des fluides et l'environnement: 1–8.

  • Billen, G., M. Somville, E. de Becker & P. Servais, 1985. A nitrogen budget of the Scheldt hydrographical basin. Neth. J. Sea Res. 19: 223–230.

    Google Scholar 

  • Billen, G., C. Lancelot, E. De Becker & P. Servais, 1986. The terrestrial marine interface: modelling nitrogen transformations during its transfer through the Scheldt river system and its estuarine zone. In Nihoul, J. C. J. (ed.), Marine interfaces Ecohydrodynamics. Elsevier: 429–490.

  • Billen, G. & C. Lancelot, 1988. Modelling benthic nitrogen cycling in temperate coastal ecosystems. In: Blackburn, T. H. & J. Sorensen (eds), Nitrogen cycling in coastal marine environments. SCOPE. John Wiley & Sons, Chichester: 341–378.

    Google Scholar 

  • Billen, G., C. Lancelot, E. De Becker & P. Servais, 1988. Modelling microbial processes (phyto- and bacterioplankton) in the Schelde Estuary. Hydrobiol. Bull. 22: 43–55.

    Google Scholar 

  • Billen, G., C. Lancelot & M. Meybeck, 1991. N, P and Si retention along the aquatic continuum from land to ocean. In R. F. C. Mantoura, J.-M. Martin & R. Wollast (eds), Ocean Margin Processes in Global Change. John Wiley & Sons, Chichester: 19–44.

    Google Scholar 

  • Brock, T. D. & M. T. Madigan, 1991. Biology of microorganisms. 6th edition. Prentice Hall, Englewood Cliffs: 874 pp.

    Google Scholar 

  • Brockmann, U., G. Billen & W. W. C. Gieskes, 1988. North Sea nutrients and eutrophication. In Salomons, W., B. Bayne, E. Duursma & U. Forstner (eds), Pollution of the North Sea: an assessment. Springer, Berlin: 348–389.

    Google Scholar 

  • Brockmann, U. H., R. W. P. M. Laane & H. Postma, 1991. Cycling of nutrient elements in the North Sea. Neth. J. Sea Res. 26: 239–264.

    Google Scholar 

  • Di Toro, D. M., D. J. O'Connor & R. V. Thomann, 1971. A dynamic model of the phytoplankton in the Sacramento-San Joaquin Delta. Adv. chem. Ser. 106: 131–150.

    Google Scholar 

  • Fontugne, M. R. & J. M. Jouanneau, 1987. Modulation of the particulate organic flux to the ocean by a macrotidal estuary: evidence from measurements of carbon isotopes in organic matter from the Gironde system. Estuar. coast. Shelf Sci. 24: 377–387.

    Google Scholar 

  • Garber, J. M., 1984. Laboratory study of nitrogen and phosphorus remineralization during the decomposition of coastal plankton and seston. Estuar. coast. Shelf Sci. 18: 685–702.

    Google Scholar 

  • Gearing, J. N., P. J. Gearing, D. T. Rudnick, A. D. Requejo & M. J. Hutchins, 1984. Isotope variability of organic carbon in a phytoplankton-based temperate estuary. Geochim. Cosmochim. Acta 48: 1089–1098.

    Google Scholar 

  • Goreau, T. J., W. A. Kaplan, S. C. Wofsy, M. B. McElroy, F. A. Valois & S. W. Watson, 1980. Production of and NO 2 and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl. envir. Microbiol 40: 526–532.

    Google Scholar 

  • Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of seawater analysis. Verlag Chemie, Weinheim, 419 pp.

    Google Scholar 

  • de Hoop, B. J., P. M. J. Herman, H. Scholten & K. Soetaert, 1993. SENECA 2.0. A Simulation ENvironment for ECological Application. MANUAL

  • Heip, C., 1988. Biota and abiotic environment in the Westerschelde estuary. Hydrobiol. Bull. 22: 31–34.

    Google Scholar 

  • Helder, W. & R. T. P. De Vries, 1983. Estuarine nitrite maxima and nitrifying bacteria (Ems-Dollard estuary). Neth. J. Sea Res. 17: 1–18.

    Google Scholar 

  • Jorgensen, B. B. & J. Sorensen, 1985. Seasonal cycles of O2, NO3, and SO4 reduction in estuarine sediments. The significance of an NO 3 reduction maximum in spring. Mar. Ecol. Progr. Ser. 24: 65–74.

    Google Scholar 

  • Kaplan, W. A., 1983. Nitrification. In Carpenter, E. J. & D. G. Capone (eds), Nitrogen in the Marine Environment. Academic Press, New York: 139–190.

    Google Scholar 

  • Klepper, O., 1989. A Model of Carbon Flows in Relation to Macrobenthic Food Supply in the Oosterschelde Estuary (SW Netherlands). Ph. D. thesis, University of Wageningen, Wageningen: 1–270.

    Google Scholar 

  • Kromkamp, J., A. van Spaendonk, J. Peene, P. van Rijswijk & N. Goosen, 1992. Light, nutrient and phytoplankton primary production in the eutrophic, turbid Westerschelde estuary (The Netherlands). In JEEP 92. Major biological processes in european tidal estuaries. MAST report: 115–126.

  • Lancelot, C. & G. Billen, 1984. Activity of heterotrophic bacteria and its coupling to primary production during the spring phytoplankton bloom in the southern bight of the North Sea. Limnol. Oceanogr. 29: 721–730.

    Google Scholar 

  • Lancelot, C. & G. Billen, 1985. Carbon-nitrogen relationships in nutrient metabolism of coastal marine ecosystems. Adv. aquat. Microbiol. 3: 263–321.

    Google Scholar 

  • Law, C. S. & N. J. P. Owens, 1990. Denitrification and nitrous oxide in the North Sea. Neth. J. Sea Res. 25: 65–74.

    Google Scholar 

  • Loder, T. C. & R. P. Reichard, 1981. The dynamics of conservative mixing in estuaries. Estuaries 4: 64–69.

    Google Scholar 

  • Lucotte, M., C. Hillaire-Marcel & P. Louchouam, 1991. First-order organic carbon budget in the St Lawrence Estuary from 13C data. Estuar. coast. Shelf Sci. 32: 297–312.

    Google Scholar 

  • Malcolm, S. J. & S. O. Stanley, 1982. The sediment environment. In D. B. Nedwell & C. M. Brown (eds), Sediment microbiology. Academic Press, New York: 15–52.

    Google Scholar 

  • Meybeck, M., 1982. Carbon, nitrogen and phosphorus transport by world rivers. Am. J. Sci. 282: 401–450.

    Google Scholar 

  • Nihoul, J. C. J. & F. C. Ronday, 1975. The influence of tidal stress on the residual circulation. Tellus 27: 484–489.

    Google Scholar 

  • Nixon, S. W. & M. E. Q. Pilson, 1983. Nitrogen in estuarine and coastal marine ecosystems. In Carpenter, E. J. & D. G. Capone (eds), Nitrogen in the Marine Environment. Academic Press, New York: 565–648.

    Google Scholar 

  • Odd, N. V. M., 1988. Mathematical modelling of mud transport in estuaries. In Dronkers, D. & W. van Leussen (eds), Physical processes in estuaries. Springer-Verlag, Berlin: 503–531.

    Google Scholar 

  • O'Kane, J. P., 1980. Estuarine water-quality management. Pitman, Boston.

    Google Scholar 

  • Otto, L., J. T. F. Zimmerman, G. K. Fumes, M. Mork, R. Saetre & G. Becker, 1990. Review of the physical oceanography of the North Sea. Neth. J. Sea Res. 26: 161–238.

    Google Scholar 

  • Prosser, J. I., 1990. Mathematical modeling of nitrification. In: Adv. Microb. Ecol. 11: 263–304.

    Google Scholar 

  • SAWES, 1991. Waterkwaliteitsmodel Westerschelde. WL-rapport T257.

  • Seitzinger, S. P., 1988. Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol. Oceanogr. 33: 702–724.

    Google Scholar 

  • Soetaert, K. & P. M. J. Herman, 1994. One foot in the grave — zooplankton drift in the Westerschelde estuary (The Netherlands). Mar. Ecol. Progr. Ser. 105: 19–25.

    Google Scholar 

  • Soetaert, K., P. M. J. Herman & J. Kromkamp, 1994. Living in the twilight: estimating net phytoplankton growth in the Westerschelde estuary (The Netherlands) by means of an ecosystem model (MOSES). J. Plankt. Res. 16: 1277–1301.

    Google Scholar 

  • Soetaert, K. & P. M. J. Herman, 1995a. Estimating estuarine residence times in the Westerschelde (The Netherlands) using a box model with fixed dispersion coefficients. Hydrobiologia 311 (Dev. Hydrobiol. 110): 215–224.

    Google Scholar 

  • Soetaert, K. & P. M. J. Herman, 1995b. Carbon flows in the Westerschelde estuary (The Netherlands) evaluated by means of an ecosystem model (MOSES). Hydrobiologia 311 (Dev. Hydrobiol. 110): 247–266.

    Google Scholar 

  • Soetaert, K. & P. M. J. Herman, 1993. MOSES — model of the scheldt estuary-ecosystem model development under SENECA. Report, 89 pp.

  • Somville, M., G. Billen & J. Smitz, 1982. An ecophysiological model of nitrification in the Scheldt estuary. Mathem. Modelling 3: 523–533.

    Google Scholar 

  • Spitzy, A. & V. Ittekot, 1991. Dissolved and particulate organic matter in rivers. In R. F. C. Mantoura, J. M. Martin & R. Wollast (eds), Ocean margin processes in global change. Wiley & Sons, Chichester: 5–18.

    Google Scholar 

  • Streeter, H. W. & E. B. Phelps, 1925. Study of the pollution and natural purification of the Ohio river. III. Factors concerned in the phenomena of oxidation and reaeration. Bull. U.S. Publ. Health Serv. 116.

  • SYSTAT, 1992. Systat for windows: graphics, version 5. Evanston, IL: SYSTAT inc., 636 pp.

    Google Scholar 

  • Tan, F. C. & P. M. Strain, 1979. Organic carbon isotope ratios in recent sediments in the St Lawrence estuary and the gulf of St Lawrence. Estuar. coast. mar. Sci. 8: 213–255.

    Google Scholar 

  • Thomann, R. V. & J. A. Mueller, 1987. Principles of surface water quality modelling and control. New York, Harper & Row.

    Google Scholar 

  • Van Eck, G. Th. M. & N. M. de Rooij, 1990. Development of a water quality and bio-accumulation model for the Scheldt estuary. In W. Michaelis (ed.), Coastal and Estuarine Studies. Springer Verlag. Berlin, Heidelberg: 95–104.

    Google Scholar 

  • van Maldegem, D., 1988. Verzeilen van de immissiegegevens van het oppervlaktewater van het Scheede estuarium over de periode 1975 t/m 1986. Internal report RWS. GWAO-88.1267.

  • Vries, I. de, F. Hopstaken, H. Goossens, M. de Vries, H. de Vries & J. Heringa, 1988. GREWAQ: an ecological model for Lake Grevelingen. Rijkswaterstaat, Tidal Water division report T 021503.

  • Wattel, G. & A. Schouwenaar, 1991. SAWES-nota 19.06. Rijkswaterstaat, D.G.W.

  • Wollast, R., 1976. Transport et accumulation de polluants dans l'estuaire de l'Escaut. In J. C. Nihoul & R. Wollast (eds). l'Estuaire de l'Escaut. Projet Mer 10: 191–201.

  • Wollast, R., 1983. Interactions in estuaries and coastal waters. In: Bolin, B. & R. B. Cook (eds), The major biogeochemical cycles and their interactions. SCOPE.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soetaert, K., Herman, P.M.J. Nitrogen dynamics in the Westerschelde estuary (SW Netherlands) estimated by means of the ecosystem model MOSES. Hydrobiologia 311, 225–246 (1995). https://doi.org/10.1007/BF00008583

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008583

Key words

Navigation