Recent Updates of Biodiesel Production: Source, Production Methods, and Metagenomic Approach

  • Chapter
  • First Online:
Bioenergy Research: Revisiting Latest Development

Part of the book series: Clean Energy Production Technologies ((CEPT))

Abstract

The fossil fuels are considered to be the main energy sources and fulfill the need of whole energy requirement of the world in the present time. The major fossil fuels or petroleum products that are generally used worldwide are petrol, diesel, and liquid petroleum gas (LPG). These fuels have few disadvantages like they produce several harmful gases which play a major role in the environmental pollution. There are very less sources of fossil fuels found on earth and that may be finished after a certain time period. Hence, it is very important to develop an alternative energy that can fulfill the need of energy in the future. There are several renewable energy sources like solar energy, hydrothermal energy, as well as biofuels. Among these energy sources, biofuel is considered as the better alternative option of fossil fuel due to its easy transportation and widely available production sources. Bioethanol, biomethanol, biogas, biohydrogen, and bio-oils are the major categories of biofuel. Biodiesel is the alternative energy source of diesel and produced from various biological sources like plant, algae, microbial biomass, and edible as well as non-edible vegetable oils. There are different methods such as pyrolysis, dilution, as well as transesterification used for the biodiesel production. Several microbial enzymes show an effective role in the digestion of biomass into biodiesel. These microbial enzymes may be produced from bacterial and fungal species. The metagenomic methods play a major role in the identification along with screening of desired microbial species for the production of biomass-degrading enzymes. The metagenomic approaches are much important in the enhancement of the biodiesel production. The biodiesel production in India and the world are increasing day by day. In this study, the authors have been focused on the source of biodiesel, methods of production, as well as metagenomic approaches for biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acevedo JC, Hernandez JA, Valdes CF, Khanal SK (2015) Analysis of operating costs for producing biodiesel from palm oil at pilot-scale in Colombia. Bioresour Technol 188:117–123

    Article  CAS  Google Scholar 

  • Alves LF, Westmann CA, Lovate GL, Siqueira GMV, Borelli TC, Guazzaroni ME (2018) Metagenomic approaches for understanding new concepts in microbial science. Int J Genom 2018:2312987

    Google Scholar 

  • Arbab MI, Varman M, Masjuki HH, Kalam MA, Imtenan S, Sajjad H, Fattah IMR (2015) Evaluation of combustion, performance, and emissions of optimum palm–coconut blend in turbocharged and non-turbocharged conditions of a diesel engine. Energ Conver Manage 90:111–120

    Article  CAS  Google Scholar 

  • Aro EM (2016) From first generation biofuels to advanced solar biofuels. Ambio 45:24–33

    Article  CAS  Google Scholar 

  • Asada C, Doi K, Sasaki C, Nakamura Y (2012) Efficient extraction of starch from microalgae using ultrasonic homogenizer and its conversion into ethanol by simultaneous saccharification and fermentation. Nat Res 3:175–179

    Google Scholar 

  • Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sustain Energy Rev 16:2070–2093

    Article  Google Scholar 

  • Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badruddin IA, Fayaz H (2013) Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew Sustain Energy Rev 18:211–245

    Article  CAS  Google Scholar 

  • Attwood GT, Wakelin SA, Leahy SC, Rowe S, Clarke S, Chapman DF, Muirhead R, Jacobs JME (2019) Applications of the soil, plant and rumen microbiomes in pastoral agriculture. Front Nutr 6:1–17

    Article  CAS  Google Scholar 

  • Azambuja SPH, Teixeira GS, Andrietta MGS, Torres-Mayanga PC, Forster-Carneiro T, Rosa CA, Goldbeck R (2019) Analysis of metabolite profiles of Saccharomyces cerevisiae strains suitable for butanol production. FEMS Microbiol Lett 366:fnz164

    Article  CAS  Google Scholar 

  • Bajaj A, Lohan P, Jha PN, Mehrotra R (2010) Biodiesel production through lipase catalyzed transesterification: an overview. J Mol Catal B: Enzym 62:9–14

    Article  CAS  Google Scholar 

  • Balat M (2011) Potential alternatives to edible oils for biodiesel production – a review of current work. Energ Conver Manage 52:1479–1492

    Article  CAS  Google Scholar 

  • Balat M, Balat H (2010) Progress in biodiesel processing. Appl Energy 87:1815–1835

    Article  CAS  Google Scholar 

  • Balat M, Demirbas MF (2009) Bio-oil from pyrolysis of black Alder wood. Energy Source 31:1719–1727

    Article  CAS  Google Scholar 

  • Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S (2015) Scope of algae as third generation biofuels. Front Bioeng Biotechnol 2:1–13

    Article  Google Scholar 

  • Betiku E, Okunsolawo SS, Ajala SO, Odedele OS (2015) Performance evaluation of artificial neural network coupled with generic algorithm and response surface methodology in modeling and optimization of biodiesel production process parameters from shea tree (Vitellaria paradoxa) nut butter. Renew Energy 76:408–417

    Article  CAS  Google Scholar 

  • Bhatia SK, Mehariya S, Bhatia RK, Kumar M, Pugazhendhi A, Awasthi MK, Atabani AE, Kumar G, Kim W, Seo SO, Yang YH (2020) Wastewater based microalgal biorefinery for bioenergy production: progress and challenges. Sci Total Environ 751:141599

    Article  CAS  Google Scholar 

  • Bhuiya MMK, Rasul MG, Khan MMK, Ashwath N, Azad AK (2016) Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks. Renew Sustain Energy Rev 55:1109–1128

    Article  CAS  Google Scholar 

  • Borugadda VB, Goud VV (2012) Biodiesel production from renewable feedstocks: status and opportunities. Renew Sustain Energy Rev 16:4763–4784

    Article  CAS  Google Scholar 

  • Canakci M (2007a) Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel. Bioresour Technol 6:1167–1175

    Article  CAS  Google Scholar 

  • Canakci M (2007b) The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour Technol 98:183–190

    Article  CAS  Google Scholar 

  • Canakci M, Sanli H (2008) Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind Microbiol Biotechnol 35:431–441

    Article  CAS  Google Scholar 

  • Chaturvedi VK, Hangloo A, Pathak RK, Gupta KK, Singh V, Verma V, Singh MP (2017) Stem cell therapy for neurodegenerative disorders. In: Verma V, Singh MP, Kumar M (eds) Stem cells from culture dish to clinic. Nova Science Publishers, New York, pp 269–280

    Google Scholar 

  • Chen X, Ma D, Liu J, Luo Q, Liu L (2020a) Engineering the transmission efficiency of the noncyclic glyoxylate pathway for fumarate production in Escherichia coli. Biotechnol Biofuels 13:132

    Article  CAS  Google Scholar 

  • Chen D, Zuo X, Li J, Wang X, Liu J (2020b) Carbon migration and metagenomic characteristics during anaerobic digestion of rice straw. Biotechnol Biofuels 13:130. https://doi.org/10.1186/s13068-020-01770-4

    Article  CAS  Google Scholar 

  • Chen T, Sun Q, Ma Y, Zeng W, Liu R, Qu D, Huang L, Xu H (2020c) A transcriptome atlas of silkworm silk glands revealed by PacBio single-molecule long-read sequencing. Mol Genet Genomics 295:1227–1237

    Article  CAS  Google Scholar 

  • Cheruiyot NK, Hou WC, Wang LC, Chen CY (2019) The impact of low to high waste cooking oil-based biodiesel blends on toxic organic pollutant emissions from heavy-duty diesel engines. Chemosphere 235:726–733

    Article  CAS  Google Scholar 

  • Cho JM, Oh YK, Park WK, Chang YK (2020) Effects of nitrogen supplementation status on CO2 biofixation and biofuel production of the promising microalga chlorella sp. ABC-001. J Microbiol Biotechnol 30:1235–1243

    Article  Google Scholar 

  • Christofolini DM, Cordts EB, Santos-Pinheiro F, Kayaki EA, Dornas MCF, Bianco B, Barbosa CP (2017) How polymorphic markers contribute to genetic diseases in different populations? The study of inhibin A for premature ovarian insufficiency. Einstein (Sao Paulo) 15:269–272

    Article  Google Scholar 

  • Cordero-Ravelo V, Schallenberg-Rodriguez J (2018) Biodiesel production as a solution to waste cooking oil (WCO) disposal. Will any type of WCO do for a transesterification process? A quality assessment. J Environ Manage 228:117–129

    Article  CAS  Google Scholar 

  • Cross ES, Sappok AG, Wong VW, Kroll JH (2015) Load-dependent emission factors and chemical characteristics of IVOCs from a medium-duty diesel engine. Environ Sci Technol 49:13483–13491

    Article  CAS  Google Scholar 

  • Degfie TA, Mamo TT, Mekonnen YS (2019) Optimized biodiesel production from waste cooking oil (WCO) using calcium oxide (CaO) nano-catalyst. Sci Rep 9(1):18982. https://doi.org/10.1038/s41598-019-55403-4

    Article  CAS  Google Scholar 

  • Demirbas MF (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energ Conver Manage 42:1357–1378

    Article  CAS  Google Scholar 

  • Demirbas A (2009a) Biodiesel from waste cooking oil via base-catalytic and supercritical meth anol transesterification. Energ Conver Manage 50:923–927. https://doi.org/10.1016/j.enconman.2008.12.023

    Article  CAS  Google Scholar 

  • Demirbas A (2009b) Progress and recent trends in biodiesel fuels. Energ Conver Manage 50:14–34

    Article  CAS  Google Scholar 

  • Demirbas A, Bafail A, Ahmad W, Sheikh M (2016) Biodiesel production from non-edible plant oils. Energy Explor Exploit 34:290–318

    Article  CAS  Google Scholar 

  • Dhar A, Agarwal AK (2014) Performance, emissions and combustion characteristics of Karanja biodiesel in a transportation engine. Fuel 119:70–80

    Article  CAS  Google Scholar 

  • Du W, Li W, Sun T, Chen X, Liu D (2008) Perspectives for biotechnological production of biodiesel and impacts. Appl Microbiol Biotechnol 79:331–337

    Article  CAS  Google Scholar 

  • Farooq M, Ramli A, Subbarao D (2013) Biodiesel production from waste cooking oil using bifunctional heterogeneous solid catalysts. J Clean Prod 59:131–140

    Article  CAS  Google Scholar 

  • Fattah IMR, Ming C, Chan QN, Wehrfritz A, Pham PX, Yang W, Kook S, Medwell PR, Yeoh GH, Hawkes ER, Masri AR (2018) Spray and combustion investigation of post injections under low-temperature combustion conditions with biodiesel. Energy Fuel 32:8727–8742

    Article  CAS  Google Scholar 

  • Feng Y, Zhang A, Li J, He B (2011) A continuous process for biodiesel production in a fixed bed reactor packed with cation-exchange resin as heterogeneous catalyst. Bioresour Technol 102:3607–3609

    Article  CAS  Google Scholar 

  • Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Reyes-Duarte D, Santos VAPMD, Strompl C, Elborough K, Jarvis G, Neef A, Yakimov MM, Timmis KN, Golyshin PN (2005) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7:1996–2010

    Article  CAS  Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416

    Article  CAS  Google Scholar 

  • Gui MM, Lee KT, Bhatia S (2008) Feasibility of edible oil vs non-edible oil vs waste edible oil as biodiesel feedstock. Energy 33:1646–1653

    Article  CAS  Google Scholar 

  • Guo M, Wei Y, Lee H, Maia J, Morrison E (2020) One-step extrusion of concentrated lidocaine lipid nanocarrier (LNC) dispersions. Int J Pharm 589:119817

    Article  CAS  Google Scholar 

  • Hernández-Martín E, Otero C (2008) Different enzyme requirements for the synthesis of biodiesel: Novozym 435 and Lipozyme TL IM. Bioresour Technol 99:277–286

    Article  CAS  Google Scholar 

  • Hidalgo P, Ciudad G, Schober S, Mittelbach M, Navia R (2015) Biodiesel synthesis by direct transesterification of microalga Botryococcus braunii with continuous methanol reflux. Bioresour Technol 181:32–39

    Article  CAS  Google Scholar 

  • Hsu A-F, Jones KC, Foglia TA, Marmer WN (2004) Transesterification activity of lipases immobilized in a phyllosilicate sol-gel matrix. Biotechnol Lett 26:917–921

    Article  CAS  Google Scholar 

  • Hu X, Cheng T, Liu J (2018) A novel Serratia sp. ZS6 isolate derived from petroleum sludge secretes biosurfactant and lipase in medium with olive oil as sole carbon source. AMB Express 8:165

    Article  CAS  Google Scholar 

  • Itoh T (2017) Ionic liquids as tool to improve enzymatic organic synthesis. Chem Rev 117:10567–10607

    Article  CAS  Google Scholar 

  • Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuels production through biomass pyrolysis—a technological review. Energies 5:4952–5001

    Article  CAS  Google Scholar 

  • Jain S, Sharma MP (2010) Prospects of biodiesel from Jatropha in India: a review. Renew Sustain Energy Rev 14:763–771

    Article  CAS  Google Scholar 

  • Jayed MH, Masjuki HH, Saidur R, Kalam MA, Jahirul MI (2009) Environmental aspects and challenges of oilseed produced biodiesel in Southeast Asia. Renew Sustain Energy Rev 13:2452–2462

    Article  CAS  Google Scholar 

  • Jegannathan KR, Jun-Yee L, Chan E-S, Ravindra P (2010) Production of biodiesel from palm oil using liquid core lipase encapsulated in j-carrageenan. Fuel 89:2272–2277

    Article  CAS  Google Scholar 

  • Jeong SW, HwangBo K, Lim JM, Nam SW, Lee BS, Jeong B, Chang YK, Jeong WJ, Park YI (2020) Genetic impairment of cellulose biosynthesis increases Cell Wall fragility and improves lipid extractability from oleaginous alga Nannochloropsis Salina. Microorganisms 8:E1195

    Article  CAS  Google Scholar 

  • Jia S, Huang Z, Lei Y, Zhang L, Li Y, Luo Y (2018) Application of Illumina-MiSeq high throughput sequencing and culture-dependent techniques for the identification of microbiota of silver carp (Hypophthalmichthys molitrix) treated by tea polyphenols. Food Microbiol 76:52–61

    Article  CAS  Google Scholar 

  • Jiang ST, Zhang FJ, Pan LJ (2010) Sodium phosphate as a solid catalyst for biodiesel preparation. Braz J Chem Eng 27:137–144

    Article  CAS  Google Scholar 

  • Jo SW, Do JM, Na H, Hong JW, Kim IS, Yoon HS (2020) Assessment of biomass potentials of microalgal communities in open pond raceways using mass cultivation. Peer J 8:e9418

    Article  Google Scholar 

  • Jünemann S, Kleinbölting N, Jaenicke S, Henke C, Hassa J, Nelkner J, Stolze Y, Albanum SP, Schluter A, Goesmann A, Sczyrba A, Stoye J (2017) Bioinformatics for NGS-based metagenomics and the application to biogas research. J Biotechnol 261:10–23. https://doi.org/10.1016/J.JBIOTEC.2017.08.012

    Article  Google Scholar 

  • Kim EY, Oh KH, Lee MH, Kang CH, Oh TK, Yoon JH (2009) Novel cold-adapted alkaline lipase from an intertidal flat metagenome and proposal for a new family of bacterial lipases. Appl Environ Microbiol 75:257–260

    Article  CAS  Google Scholar 

  • Knothe G (2008) “Designer” biodiesel: optimizing fatty Ester composition to improve fuel properties. Energy Fuel 22:1358–1364

    Article  CAS  Google Scholar 

  • Knothe G, Dunn RO, Bagby MO (1997) Biodiesel: the use of vegetable oils and their derivatives as alternative diesel fuels. In: Fuels and chemicals from biomass. American Chemical Society, Washington, DC, pp 172–208

    Chapter  Google Scholar 

  • Kong X, Salvador CM, Carlsson S, Pathak R, Davidsson KO, Breton ML, Gaita SM, Mitra K, Hallquist AM, Hallquist M, Pettersson JBC (2020) Molecular characterization and optical properties of primary emissions from a residential wood burning boiler. Sci Total Environ 754:142143

    Article  CAS  Google Scholar 

  • Kumari A, Mahapatra P, Garlapati VK, Banerjee R (2009) Enzymatic transesterification of Jatropha oil. Biotechnol Biofuels 2:1–6

    Article  CAS  Google Scholar 

  • Lee YG, Seo JH (2019) Production of 2,3-butanediol from glucose and cassava hydrolysates by metabolically engineered industrial polyploid Saccharomyces cerevisiae. Biotechnol Biofuels 12:204

    Article  CAS  Google Scholar 

  • Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87:1083–1095

    Article  CAS  Google Scholar 

  • Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771

    Article  CAS  Google Scholar 

  • Li Y, Poroyko V, Yan Z, Pan L, Feng Y, Zhao P, **e Z, Hong L (2016) Characterization of intestinal microbiomes of Hirschsprung's disease patients with or without enterocolitis using Illumina-MiSeq high-throughput sequencing. PLoS One 11:e0162079. https://doi.org/10.1371/journal.pone.0162079

    Article  CAS  Google Scholar 

  • Liang L, Liu R, Freed EF, Eckert CA (2020) Synthetic biology and metabolic engineering employing Escherichia coli for C2-C6 bioalcohol production. Front Bioeng Biotechnol 8:710

    Article  Google Scholar 

  • Linko Y-Y, Yan WX (1996) Biocatalytic production of useful esters by two forms of lipase from Candida rugosa. J Chem Technol Biotechnol 65:163–170

    Article  CAS  Google Scholar 

  • Lou H, Hao Y, Zhang W, Su P, Zhang F, Chen Y, Feng D, Li Y (2019) Emission of intermediate volatility organic compounds from a ship main engine burning heavy fuel oil. J Environ Sci 84:197–204

    Article  Google Scholar 

  • Ma C, Wasti S, Huang S, Zhang Z, Mishra R, Jiang S, You Z, Wu Y, Chang H, Wang Y, Huo D, Li C, Sun Z, Sun Z, Zhang J (2020) The gut microbiome stability is altered by probiotic ingestion and improved by the continuous supplementation of galactooligosaccharide. Gut Microbes 12:1785252

    Article  CAS  Google Scholar 

  • Maity JP, Jochen B, Chen CY, Prosun B (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas. Energy 78:104–113

    Article  CAS  Google Scholar 

  • Miracolo MA, Presto AA, Lambe AT, Hennigan CJ, Donahue NM, Kroll JH, Worsnop DR, Robinson AL (2010) Photo-oxidation of low-volatility organics found in motor vehicle emissions: production and chemical evolution of organic aerosol mass. Environ Sci Technol 44:1638–1643

    Article  CAS  Google Scholar 

  • Mittelbach M (1990) Lipase catalyzed alcoholysis of sunflower oil. J Am Oil Chem Soc 67:168–170

    Article  CAS  Google Scholar 

  • Moalic-Allain V, Mercier B, Gueguen P, Ferec C (2016) Next generation sequencing with a semi-conductor technology (Ion Torrent PGM™) for HLA ty**: overall workflow performance and debate. Le séquençage de nouvelle génération par une technique de séquençage sur semi-conducteurs (Ion Torrent PGM™) appliqué aux typages HLA: performances et discussion. Ann Biol Clin 74:449–456

    Google Scholar 

  • Mousavi S, Najafpour GD, Mohammadi M (2018) CO2 bio-fixation and biofuel production in an airlift photobioreactor by an isolated strain of microalgae Coelastrum sp. SM under high CO2 concentrations. Environ Sci Pollut Res Int 25:30139–30150

    Article  CAS  Google Scholar 

  • Nabi MN, Zare A, Hossain FM, Ristovski ZD, Brown RJ (2017) Reductions in diesel emissions including PM and PN emissions with diesel-biodiesel blends. J Clean Prod 166:860–868

    Article  CAS  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597

    Article  CAS  Google Scholar 

  • Ogunkunle O, Ahmed NA (2019a) A review of global current scenario of biodiesel adoption and combustion in vehicular diesel engines. Energy Rep 5:1560–1579

    Article  Google Scholar 

  • Ogunkunle O, Ahmed NA (2019b) Performance evaluation of a diesel engine using blends of optimized yields of sand apple (Parinari polyandra) oil biodiesel. Renew Energy 134:1320–1331

    Article  CAS  Google Scholar 

  • Parson W, Strobl C, Huber G, Zimmermann B, Gomes SM, Souto L, Fendt L, Delport R, Langit R, Wootton S, Lagace R, Irwin J (2013) Evaluation of next generation mtGenome sequencing using the ion torrent personal genome machine (PGM). Forensic Sci Int Genet 7:543–549

    Article  CAS  Google Scholar 

  • Ramadhas AS, Jayaraj S, Muraleedharan C (2005) Characterization and effect of using rubber seed oil as fuel in the compression ignition engines. Renew Energy 30:795–803

    Article  CAS  Google Scholar 

  • Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez A (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268

    Article  CAS  Google Scholar 

  • Ranganathan SV, Narasimhan SL, Muthukumar K (2008) An overview of enzymatic production of biodiesel. Bioresour Technol 99:3975–3981

    Article  CAS  Google Scholar 

  • Roschat W, Siritanon T, Yoosuk B, Sudyoadsuk T, Promarak V (2017) Rubber seed oil as potential non-edible feedstock for biodiesel production using heterogeneous catalyst in Thailand. Renew Energy 101:937–944

    Article  CAS  Google Scholar 

  • Rubin E (2008) Genomics of cellulosic biofuels. Nature 454:841–845. https://doi.org/10.1038/nature07190

    Article  CAS  Google Scholar 

  • Samukawa T, Kaieda M, Matsumoto T, Ban K, Kondo A, Shimada Y, Noda H (2000) Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil. J Biosci Bioeng 90:180–183

    Article  CAS  Google Scholar 

  • Schwab AW, Bagby MO, Freedman B (1987) Preparation and properties of diesel fuels from vegetable oils. Fuel 66:1372–1378

    Article  CAS  Google Scholar 

  • Sebastian R, Kim JY, Kim TH, Lee KT (2013) Metagenomics: a promising approach to assess enzymes biocatalyst for biofuel production. Asian J Biotechnol 5:33–50

    Article  CAS  Google Scholar 

  • Selmi B, Thomas D (1998) Immobilized lipase-catalyzed ethanolysis of sunflower oil in a solvent-free medium. J Am Oil Chem Soc 75:691–695

    Article  CAS  Google Scholar 

  • Shah S, Sharma S, Gupta MN (2004) Biodiesel preparation by lipase-catalyzed transesterification of jatropha oil. Energy Fuel 18:154–159

    Article  CAS  Google Scholar 

  • Shahab RL, Brethauer S, Davey MP, Smith AG, Vignolini S, Luterbacher JS, Studer MH (2020) A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose. Science 369:eabb1214. https://doi.org/10.1126/science.abb1214

    Article  CAS  Google Scholar 

  • Shan R, Lu L, Shi Y, Yuan H, Shi J (2018) Catalysts from renewable resources for biodiesel production. Energ Conver Manage 178:277–289

    Article  CAS  Google Scholar 

  • Sharma YC, Singh B (2008) Development of biodiesel from karanja, a tree found in rural India. Fuel 87:1740–1742

    Article  CAS  Google Scholar 

  • Sharma M, Khan AA, Puri SK, Tuli DK (2012) Wood ash as a potential heterogeneous catalyst for biodiesel synthesis. Biomass Bioenergy 41:94–106

    Article  CAS  Google Scholar 

  • Sheehan J, Camobreco V, Duffield J, Shapouri H, Graboski M, Tyson KS (2000) An overview of biodiesel and petroleum diesel life cycles (No. NREL/TP-580-24772). National Renewable Energy Lab, Golden, CO

    Book  Google Scholar 

  • Shi G, Yu F, Wang Y, Pan D, Wang H, Li R (2016) A novel one-pot synthesis of tetragonal sulfated zirconia catalyst with high activity for biodiesel production from the transesterification of soybean oil. Renew Energy 92:22–29

    Article  CAS  Google Scholar 

  • Silitonga AS, Masjuki HH, Mahlia TMI, Ong HC, Chong WT, Boosroh MH (2013) Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renew Sustain Energy Rev 22:346–360

    Article  CAS  Google Scholar 

  • Singh SP, Singh D (2010) Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew Sustain Energy Rev 14:200–216

    Article  CAS  Google Scholar 

  • Singh V, Singh MP, Verma V, Singh P, Srivastava R, Singh AK (2016) Characteristics of cold adapted enzyme and its comparison with mesophilic and thermophilic counterpart. Cell Mol Biol 62:144

    Google Scholar 

  • Singh AK, Singh V, Chaturvedi VK, Singh MP, Verma V (2017) Molecular techniques used for the study of soil bacterial diversity. In: Incredible world of biotechnology. Nova Science Publishers, New York, pp 67–78. ISBN: 978-1-53611-097-5

    Google Scholar 

  • Singh V, Yadav VK, Mishra V (2020a) Nanotechnology: an application in biofuel production. In: Srivastava M, Srivastava N, Mishra P, Gupta V (eds) Nanomaterials in biofuels research. Clean energy production technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-9333-4_6

  • Singh V, Singh MP, Mishra V (2020b) Bioremediation of toxic metal ions from coal washery effluent. Desalin Water Treat 197:300–318. https://doi.org/10.5004/dwt.2020.25996

    Article  CAS  Google Scholar 

  • Singh N, Singh V, Mishra D, Singh MP (2020c) An introduction of metagenomics and its application in microbial fuel production. In: Srivastava N, Srivastava M, Mishra P, Gupta VK (eds) Microbial strategies for techno-economic biofuel production. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-7190-9_10

    Chapter  Google Scholar 

  • Singh V, Singh N, Tabassum N, Mishra V (2020d) Microbial system: an emerging application in bioenergy production. In: Srivastava N, Srivastava M, Mishra P, Gupta VK (eds) Microbial strategies for techno-economic biofuel production. Clean Energy Production Technologies. Springer, Singapore, pp 249–264. https://doi.org/10.1007/978-981-15-7190-9_9

    Chapter  Google Scholar 

  • Singh N, Rai S, Singh V, Singh MP (2020e) Molecular characterization, pathogen-host interaction pathway and in silico approaches for vaccine design against COVID-19. J Chem Neuroanatomy 110:101874. https://doi.org/10.1016/j.jchemneu.2020.101874

  • Singh V, Yadav P, Mishra V (2020f) Recent advances on classification, properties, synthesis, and characterization of nanomaterials. In: Srivastava N, Srivastava M, Mishra P, Gupta VK (eds) Green synthesis of nanomaterials for bioenergy applications. John Wiley & Sons, pp 83–97

    Google Scholar 

  • Soares AR, Pereira PM, Santos MA (2012) Next-generation sequencing of miRNAs with Roche 454 GS-FLX technology: steps for a successful application. Methods Mol Biol 822:189–204

    Article  CAS  Google Scholar 

  • Song WW, He KB, Wang JX, Wang XT, Shi XY, Yu C, Chen WM, Zheng L (2011) Emissions of EC, OC, and PAHs from cottonseed oil biodiesel in a heavy-duty diesel engine. Environ Sci Technol 45:6683–6689

    Article  CAS  Google Scholar 

  • Song W, Thomas T, Edwards RJ (2019) Complete genome sequences of pooled genomic DNA from 10 marine bacteria using PacBio long-read sequencing. Mar Genom 48:100687

    Article  Google Scholar 

  • Sonmez C, Elcin E, Akın D, Oktem HA, Yucel M (2016) Evaluation of novel thermo-resistant Micractinium and Scenedesmus sp. for efficient biomass and lipid production under different temperature and nutrient regimes. Bioresour Technol 211:422–428

    Article  CAS  Google Scholar 

  • Sorokina KN, Samoylova YV, Gromov NV, Ogorodnikova OL, Parmon VN (2020) Production of biodiesel and succinic acid from the biomass of the microalga Micractinium sp. Bioresour Technol 317:124026

    Article  CAS  Google Scholar 

  • Sotoft LF, Rong BG, Christensen KV, Norddahl B (2010) Process simulation and economical evaluation of enzymatic biodiesel production plant. Bioresour Technol 101(14):5266–5274. Epub 2010 Feb 19. PMID: 20171880. https://doi.org/10.1016/j.biortech.2010.01.130

  • Su P, Hao Y, Qian Z, Zhang W, Chen J, Zhang F, Yin F, Feng D, Chen Y, Li Y (2020) Emissions of intermediate volatility organic compound from waste cooking oil biodiesel and marine gas oil on a ship auxiliary engine. J Environ Sci 91:262–270

    Article  Google Scholar 

  • Sulaiman IM, Hsieh YH, Simpson S (2019) Species identification of campylobacter jejuni and campylobacter coli isolates from raw poultry products by MALDI-TOF MS and rRNA sequence analysis. J AOAC Int 103:197–204. https://doi.org/10.5740/jaoacint.19-0170

    Article  Google Scholar 

  • Szczesna Antczak M, Kubiak A, Antczak T, Bielecki S (2009) Enzymatic biodiesel synthesis – key factors affecting efficiency of the process. Renew Energy 34:1185–1194

    Article  CAS  Google Scholar 

  • Talebian-Kiakalaieh A, Amin NAS, Mazaheri HA (2013) Review on novel processes of biodiesel production from waste cooking oil. Appl Energy 104:683–710

    Article  CAS  Google Scholar 

  • Van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107

    Article  CAS  Google Scholar 

  • Verma S, Kuila A (2020) Involvement of green technology in microalgal biodiesel production. Rev Environ Health 35:173–188

    Article  CAS  Google Scholar 

  • Wang R, Sun L, **e X, Ma L, Liu L, Liu X, Ji N, **e G (2014a) Biodiesel production from Stauntonia chinensis seed oil (waste from food processing): heterogeneous catalysis by modified calcite, biodiesel purification, and fuel properties. Ind Crop Prod 62:8–13

    Article  CAS  Google Scholar 

  • Wang H, Ji C, Bi S, Zhou P, Chen L, Liu T (2014b) Joint production of biodiesel and bioethanol from filamentous oleaginous microalgae Tribonema sp. Bioresour Technol 172:169–173

    Article  CAS  Google Scholar 

  • Wang H, Hart DJ, An Y (2019) Functional metagenomic technologies for the discovery of novel enzymes for biomass degradation and biofuel production. Bioenergy Res 12:457–470

    Article  Google Scholar 

  • Watanabe Y, Shimada Y, Sugihara A, Tominaga Y (2001) Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor. J Am Oil Chem Soc 78:703–707

    Article  CAS  Google Scholar 

  • Wei Y, Wu Y, Zhang L, Zhou Z, Zhou H, Yan X (2020) Genome recovery and metatranscriptomic confirmation of functional acetate-oxidizing bacteria from enriched anaerobic biogas digesters. Environ Pollut 265:114843

    Article  CAS  Google Scholar 

  • **ao Y, Guo J, Zhu H, Muhammad A, Deng H, Hu Z, Wu Q (2020) Inhibition of glucose assimilation in Auxenochlorella protothecoides by light. Biotechnol Biofuels 13:146

    Article  CAS  Google Scholar 

  • **ng MN, Zhang XZ, Huang H (2012) Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis. Biotechnol Adv 30:920–929

    Article  CAS  Google Scholar 

  • Yadav VK, Singh V, Mishra V (2019) Alkaline protease: a tool to manage solid waste and its utility in detergent industry. In: Tripathi V, Kumar P, Tripathi P, Kishore A, Kamle M (eds) Microbial genomics in sustainable agroecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-32-9860-6_14

  • Yang Y, Du L, Hosokawa M, Miyashita K (2020) Total lipids content, lipid class and fatty acid composition of ten species of microalgae. J Oleo Sci 69(10):1181–1189. https://doi.org/10.5650/jos.ess20140

    Article  CAS  Google Scholar 

  • Yee KF, Tan KT, Abdullah AZ, Lee KT (2009) Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Appl Energy 86:S189–S196

    Article  CAS  Google Scholar 

  • Zain NFM, Paramasivam M, Tan JS, Lim V, Lee CK (2020) Response surface methodology optimization of polyhydroxyalkanoate (PHA) production by Burkholderia cepacia BPT1213 using waste glycerol from palm oil based biodiesel production. Biotechnol Prog 2020:e3077

    Google Scholar 

  • Zhang K-P, Lai J-Q, Huang Z-L, Yang Z (2011) Penicillium expansum lipase-catalyzed production of biodiesel in ionic liquids. Bioresour Technol 102:2767–2772

    Article  CAS  Google Scholar 

  • Zhao Y, Nguyen NT, Presto AA, Hennigan CJ, May AA, Robinson AL (2015) Intermediate volatility organic compound emissions from on-road diesel vehicles: chemical composition, emission factors, and estimated secondary organic aerosol production. Environ Sci Technol 49:11516–11526

    Article  CAS  Google Scholar 

  • Zhou J, He Z, Yang Y, Deng Y, Tringe SG, Alvarez-Cohen (2015) High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. MBio 6(1):e02288. https://doi.org/10.1128/mBio.02288-14

    Article  CAS  Google Scholar 

  • Zou Y, Duke JL, Ferriola D, Luo Q, Wasserman J, Mosbruger TL, Luo W, Cai L, Zou K, Tairis N, Damianos G, Pagkrati I, Kukuruga D, Huang Y, Monos DS (2020) Genomic characterization of MICA gene using multiple next generation sequencing platforms: a validation study. HLA 96:4. https://doi.org/10.1111/tan.13998

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the University of Allahabad, Prayagraj, for providing all essential facilities related with the present study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, N., Singh, V., Singh, M.P. (2021). Recent Updates of Biodiesel Production: Source, Production Methods, and Metagenomic Approach. In: Srivastava, M., Srivastava, N., Singh, R. (eds) Bioenergy Research: Revisiting Latest Development. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-33-4615-4_5

Download citation

Publish with us

Policies and ethics

Navigation