Microbiological Aspects of Bioenergy Production: Recent Update and Future Directions

  • Chapter
  • First Online:
Bioenergy Research: Revisiting Latest Development

Abstract

Biofuels are considered as alternative of fossil fuels. Nowadays, conventional fuels like as petrol, diesel, and liquid petroleum gas (LPG) are the major sources of energy. The sources of fossil fuels are limited on the Earth crust and will be finished after a certain period of time. Biofuels like bioethanol, biomethanol, biogas, biohydrogen, and biodiesel are derived from various types of biological sources (plant, algae, microbial biomass) and considered as renewable sources of energy. They are green energy sources and cost-effective and also considered as alternative of fossil fuel in the future. They can be classified into several categories such as first, second, third, and fourth generations based on the source of production. There are several methods that are currently used for the production of biofuels by utilization of several biomasses. The microorganisms such as microalgae, cyanobacteria, and fungi play an important role in the production of biofuels. These microorganisms provide suitable raw materials as well as involved bioconversion of biomass during production of biofuels. This chapter is focused on the brief introduction of biofuels and role of microorganism in the biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelaziz AE, Leite GB, Hallenbeck PC (2013) Addressing the challenges for sustainable production of algal biofuels: I. algal strains and nutrient supply. Environ Technol 34:1783–1805

    Article  CAS  Google Scholar 

  • Abdullah B, Muhammad SAFS, Shokravi Z et al (2019) Fourth generation biofuel: a review on risks and mitigation strategies. Renew Sustain Energy Rev 107:37–50

    Article  Google Scholar 

  • Alam F, Mobin S, Chowdhury H (2015) Third generation biofuel from algae. Procedia Eng 105:763–768

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Thavasi V, Zharmukhamedov SK, Klimov VV, Nagata T et al (2009) Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems. Photochem Photobiol Sci 8:148–156

    Article  CAS  Google Scholar 

  • Anemaet IG, Bekker M, Hellingwerf KJ (2010) Algal photosynthesis as the primary driver for a sustainable development in energy, feed, and food production. Mar Biotechnol (NY) 12:619–629

    Article  CAS  Google Scholar 

  • Angermayr SA, Hellingwerf KJ, Lindblad P, de Mattos MJ (2009) Energy biotechnology with cyanobacteria. Curr Opin Biotechnol 20:257–263

    Article  CAS  Google Scholar 

  • Anto S, Mukherjee SS, Muthappa R et al (2020) Algae as green energy reserve: technological outlook on biofuel production. Chemosphere 242:125079

    Article  CAS  Google Scholar 

  • Arias A, Behera CR, Feijoo G, Sin G, Moreira MT (2020) Unravelling the environmental and economic impacts of innovative technologies for the enhancement of biogas production and sludge management in wastewater systems. J Environ Manage 270:110965

    Article  CAS  Google Scholar 

  • Aro EM (2016) From first generation biofuels to advanced solar biofuels. Ambio 45:24–31

    Article  CAS  Google Scholar 

  • Aryal N, Kvist T, Ammam F, Pnat D, Ottosen LDM (2018) An overview of microbial biogas enrichment. Bioresour Technol 264:359–369

    Article  CAS  Google Scholar 

  • Azwar MY, Hussain MA, Abdul-Wahab AK (2014) Development of biohydrogen production by photobiological: fermentation and electrochemical processes: a review. Renew Sustain Energy Rev 31:158–173

    Article  CAS  Google Scholar 

  • Balan V (2014) Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol 2014:1–31

    Article  CAS  Google Scholar 

  • Balasubramaniam A, Adi P, Do Thi TM, Yang JH, Labibah AS, Huang CM (2020) Skin bacteria mediate glycerol fermentation to produce electricity and resist UV-B. Microorganisms 8:E1092

    Article  CAS  Google Scholar 

  • Bandyopadhyay A, Stockel J, Min H, Sherman LA, Pakrasi HB (2010) High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat Commun 1:139

    Article  CAS  Google Scholar 

  • Bhatia L, Johri S (2015) Biovalorization potential of peels of Ananas cosmosus (L.) Merr. For ethanol production by Pichia stipitis NCIM 3498 & Pachysolen tannophilus MTCC 1077. Indian J Exp Biol 53:819–827

    Google Scholar 

  • Buaban B, Inoue H, Yano S et al (2010) Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. J Biosci Bioeng 110:18–25

    Article  CAS  Google Scholar 

  • Buitron G, Kumar G, Martinez-Arce A, Moreno G (2014) Hydrogen and methane production via a two-stage processes (H2-SBR+CH4-UASB) using tequila vinasses. Int J Hydrogen Energy 39:19249–19255

    Article  CAS  Google Scholar 

  • Chang FY, Lin CY (2004) Biohydrogen production using an up-flow anaerobic sludge blanket reactor. Int J Hydrogen Energy 29:33–39

    Article  CAS  Google Scholar 

  • Chen Y, Liu T, He H, Liang H (2018) Fe3O4/ZnMg(Al)O magnetic nanoparticles for efficient biodiesel production. Appl Organomet Chem 32:1–10

    Article  CAS  Google Scholar 

  • Cherian E, Dharmendirakumar M, Baskar G (2015) Immobilization of cellulose onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chin J Catal 36:1223–1229

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Chung D, Cha M, Guss AM, Westpheling J (2014) Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci U S A 111:8931–8936

    Article  CAS  Google Scholar 

  • Clomburg JM, Gonzalez R (2010) Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 86:419–434

    Article  CAS  Google Scholar 

  • Day JG, Thomas NJ, Achilles-Day UEM, Leakey RJG (2012) Early detection of protozoan grazers in algal biofuel culture. Bioresour Technol 114:715–719

    Article  CAS  Google Scholar 

  • De Araujo CDM, De Andade CC, De Souza E, Silva E, Dupas FA (2013) Biodiesel production from used cooking oil: a review. Renew Sustain Energy Rev 27:445–452

    Article  CAS  Google Scholar 

  • Dincer I (2012) Green methods for hydrogen production. Int J Hydrogen Energy 37:1954–1971

    Article  CAS  Google Scholar 

  • Dragone G, Fernandes B, Vicente AA, Teixeira JA. Third generation biofuels from microalgae in Current research, technology and education topics in applied microbiology and microbial biotechnology. In: Mendez-Vilas A (eds). Formatex, Badajoz (2010). 1355–1366

    Google Scholar 

  • Dutta K, Daverey A, Lin JG (2014) Evolution retrospective for alternative fuels: first to fourth generation. Energy 69:114–122

    CAS  Google Scholar 

  • Fabbri D, Torri C (2016) Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass. Curr Opin Biotechnol 38:167–173

    Article  CAS  Google Scholar 

  • Fatma S, Hameed A, Noman M et al (2018) Lignocellulosic biomass: a sustainable bioenergy source for the future. Protein Pept Lett 25:148–163

    Article  CAS  Google Scholar 

  • Fei Q, Guarnieri MT, Tao L, Laurens LML, Dowe N, Pienkos PT (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 32:596–614

    Article  CAS  Google Scholar 

  • Forte A, Zucaro A, Fagnano M, Fierro A (2017) Potential environmental impact of bioethanol production chain from fiber sorghum to be used in passenger cars. Sci Total Environ 598:365–376

    Article  CAS  Google Scholar 

  • Fu Y, Chen L, Zhang W (2016) Regulatory mechanisms related to biofuel tolerance in producing microbes. J Appl Microbiol 121:320–332

    Article  CAS  Google Scholar 

  • Gajraj RS, Singh GP, Kumar A (2018) Third generation biofuel: Algal biofuels as a sustainable energy source. In: Kumar A, Ogita S, Yau YY (eds) Biofuels: greenhouse gas mitigation and global warming. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3763-1_8

    Chapter  Google Scholar 

  • Ganesan M, Mathivani Vinayakamoorthy R, Thankappan S, Muniraj I, Uthandi S (2020) Thermotolerant glycosyl hydrolases-producing Bacillus aerius CMCPS1 and its saccharification efficiency on HCR-laccase (LccH)-pretreated corncob biomass. Biotechnol Biofuels 13:124. https://doi.org/10.1186/s13068-020-01764-2

    Article  CAS  Google Scholar 

  • Gavrilescu M, Chisti Y (2005) Biotechnology- a sustainable alternative for chemical industry. Biotechnol Adv 23:471–499

    Article  CAS  Google Scholar 

  • Gęsicka A, Borkowska M, Białas W, Kaczmarek P, Celinska E (2020) Production of raw starch-digesting Amylolytic preparation in Yarrowia lipolytica and its application in biotechnological synthesis of lactic acid and ethanol. Microorganisms 8:717

    Article  CAS  Google Scholar 

  • Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green source of renewable hydrogen. Trends Biotechnol 18:506–511

    Article  CAS  Google Scholar 

  • Gimpel JA, Specht EA, Georgianna DR, Mayfield SP (2013) Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr Opin Chem Biol 17:489–495

    Article  CAS  Google Scholar 

  • Gonzalez-Garcia S, Bacenetti J (2019) Exploring the production of bio-energy from wood biomass. Italian case study. Sci Total Environ 647:158–168

    Article  CAS  Google Scholar 

  • Gowen CM, Fong SS (2010) Exploring biodiversity for cellulosic biofuel production. Chem Biodivers 7:1086–1097

    Article  CAS  Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726

    Article  CAS  Google Scholar 

  • Grima EM, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  Google Scholar 

  • Guo M, Li C, Facciotto G et al (2015) Bioethanol from poplar clone Imola: an environmentally viable alternative to fossil fuel? Biotechnol Biofuels 8:134. https://doi.org/10.1186/s13068-015-0318-8

    Article  CAS  Google Scholar 

  • Haibach MC, Kundu S, Brookhart M, Goldman AS (2012) Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry. Acc Chem Res 45:947–958

    Article  CAS  Google Scholar 

  • Hankamer B, Lehr F, Rupprecht J, Mussgnug JH, Posten C, Kruse O (2007) Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up. Physiol Plant 131:10–21

    Article  CAS  Google Scholar 

  • Hays SG, Ducat DC (2015) Engineering cyanobacteria as photosynthetic feedstock factories. Photosynth Res 123:285–295

    Article  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  Google Scholar 

  • Hirani AH, Javed N, Asif M, Basu SK, Kumar A (2018) A review on first- and second-generation biofuel productions. In: Kumar A, Ogita S, Yau YY (eds) Biofuels: greenhouse gas mitigation and global warming. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3763-1_8

    Chapter  Google Scholar 

  • Hjersted JL, Henson MA (2009) Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae. IET Syst Biol 3:167–179

    Article  CAS  Google Scholar 

  • Hou X, Peng W, **ong L et al (2013) Engineering clostridium acetobutylicum for alcohol production. J Biotechnol 166:25–33

    Article  CAS  Google Scholar 

  • Hsia SY, Chou YT (2014) Optimization of biohydrogen production with biomechatronics. J Nanomater 2014:1–11

    Article  CAS  Google Scholar 

  • Hu P, Chakraborty S, Kumar A et al (2016) Integrated bioprocess for conversion of gaseous substrates to liquids. Proc Natl Acad Sci U S A 113:3773–3778

    Article  CAS  Google Scholar 

  • Huang J, Chen D, Wei Y, Wang Q, Li Z, Chen Y et al (2014) Direct ethanol production from lignocellulosic sugars and sugarcane bagasse by a recombinant Trichoderma reesei strain HJ48. Sci World J 2014:798683

    Google Scholar 

  • Into P, Pontes A, Sampaio JP, Limtong S (2020) Yeast diversity associated with the Phylloplane of corn plants cultivated in Thailand. Microorganisms 8:80

    Article  CAS  Google Scholar 

  • Jang YS, Park JM, Choi S, Choi YJ, do Seung Y, Cho JH, Lee SY (2012) Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol Adv 30:989–1000

    Article  CAS  Google Scholar 

  • ** H, Chen L, Wang J, Zhang W (2014) Engineering biofuel tolerance in non-native producing microorganisms. Biotechnol Adv 32:541–548

    Article  CAS  Google Scholar 

  • Kandasamy S, Muniraj IK, Purushothaman N et al (2016) High level secretion of laccase (LccH) from a newly isolated white-rot basidiomycete, Hexagonia hirta MSF2. Front Microbiol 7:707. https://doi.org/10.3389/fmicb.2016.00707

    Article  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  • Karemore A, Nayak M, Sen R (2016) Recent inventions and trends in algal biofuels research. Recent Pat Biotechnol 10:30–42

    Article  CAS  Google Scholar 

  • Kleinova A, Cvengrosova Z, Rimarcika J, Buzetzkia E, Mikulecb J, Cvengrosa J (2012) Biofuels from algae. Procedia Eng 42:231–238

    Article  CAS  Google Scholar 

  • Kriger O, Budenkova E, Babich O et al (2020) The process of producing bioethanol from Delignified cellulose isolated from plants of the Miscanthus genus. Bioengineering (Basel) 7:61

    Article  CAS  Google Scholar 

  • Kuhad R, Singh A (1993) Lignocellulose biotechnology: current and future prospects. Crit Rev Biotechnol 13:151–172

    Article  CAS  Google Scholar 

  • Kumar R, Ghosh AK, Pal P (2020) Synergy of biofuel production with waste remediation along with value-added co-products recovery through microalgae cultivation: a review of membrane-integrated green approach. Sci Total Environ 698:134169. https://doi.org/10.1016/j.scitotenv.2019.134169

    Article  CAS  Google Scholar 

  • Larson ED (2008) Biofuel production technologies: status, prospects and implications for trade and development. Report No. UNCTAD/DITC/TED/2007/10. In: United Nations conference on trade and development, New York and Geneva

    Google Scholar 

  • Lee Y, Lee K, Oh Y (2015) Recent nanoparticles engineering advances in microalgal cultivation and harvesting processes of biodiesel production: a review. Bioresour Technol 184:63–72

    Article  CAS  Google Scholar 

  • Levin L, Forchiassin F, Ramos AM (2002) Copper induction of lignin-modifying enzymes in the white-rot fungus Trametes trogii. Mycologia 94:377–383

    Article  CAS  Google Scholar 

  • Limayen A, Ricke S (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467

    Article  CAS  Google Scholar 

  • Lindblad P, Lindberg P, Oliveira P, Stensjo K, Heidorn T (2012) Design, engineering, and construction of photosynthetic microbial cell factories for renewable solar fuel production. Ambio 41:163–168

    Article  Google Scholar 

  • Littlewood J, Guo M, Boerjan W, Murphy RJ (2014) Bioethanol from poplar: a commercially viable alternative to fossil fuel in the European Union. Biotechnol Biofuels 7:113. https://doi.org/10.1186/1754-6834-7-113

    Article  CAS  Google Scholar 

  • Lu X (2010) A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol Adv 28:742–746

    Article  CAS  Google Scholar 

  • Lutke-Eversloh T (2014) Application of new metabolic engineering tools for clostridium acetobutylicum. Appl Microbiol Biotechnol 98:5823–5837

    Article  CAS  Google Scholar 

  • Lutke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22:634–647

    Article  CAS  Google Scholar 

  • Machado IM, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162:50–56

    Article  CAS  Google Scholar 

  • Mani P, Fidal VT, Bowman K, Chandra TS, Keshavarz T, Kyazze G (2020) Development of an electroactive aerobic biocathode for microbial fuel cell applications. Environ Microbiol Rep. https://doi.org/10.1111/1758-2229.12871

  • Manish S, Banerjee R (2008) Comparison of biohydrogen production processes. Int J Hydrogen Energy 33:279–286

    Article  CAS  Google Scholar 

  • Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievement of biogas from anaerobic digestion. Renew Sustain Energy Rev 45:540–555

    Article  CAS  Google Scholar 

  • Mathuriya AS (2020) Development of trickling bio-electrochemical reactor (TrickBER) for large scale energy efficient wastewater treatment. Environ Technol 2:1–35

    CAS  Google Scholar 

  • McKinlay JB, Harwood CS (2010) Photobiological production of hydrogen gas as a biofuel. Curr Opin Biotechnol 21:244–251

    Article  CAS  Google Scholar 

  • Medipally SR, Yusoff FM, Banerjee S, Shariff M (2015) Microalgae as sustainable renewable energy feedstock for biofuel production. Biomed Res Int 2015:519513

    Article  CAS  Google Scholar 

  • Mohammadshirazi A, Akram A, Rafiee S, Kalhor EB (2014) Energy and cost analyses of biodiesel production from waste cooking oil. Renew Sustain Energy Rev 33:44–49

    Article  CAS  Google Scholar 

  • Moreno-Garrido I (2008) Microalgae immobilization: current techniques and uses. Bioresour Technol 99:3949–3964

    Article  CAS  Google Scholar 

  • Mostafa SE (2010) Microbiological aspects of biofuel production: current status and future directions. J Adv Res 1:103–111

    Article  Google Scholar 

  • Nakatani M, Hibi M, Minoda M, Ogawa J, Yokozeki K, Shimizu S (2010) Two laccase isoenzymes and a peroxidase of a commercial laccase-producing basidiomycete, Trametes sp. Ha1. N Biotechnol 27:317–323

    Article  CAS  Google Scholar 

  • Ni Y, Sun Z (2009) Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol 83:415–423

    Article  CAS  Google Scholar 

  • Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KLJ (2009) Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 11:262–273

    Article  CAS  Google Scholar 

  • Nigam PS, Singh A (2014) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68

    Article  CAS  Google Scholar 

  • Okada K, Fujiwara S, Tsuzuki M (2020) Energy conservation in photosynthetic microorganisms. J Gen Appl Microbiol 66:59–65

    Article  CAS  Google Scholar 

  • Olguin EJ (2012) Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv 30:1031–1046

    Article  CAS  Google Scholar 

  • Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102:10163–10172

    Article  CAS  Google Scholar 

  • Patnayat S, Sree A (2006) Screen of bacterial Associates of Marine Sponges for single cell oil and PUFA. Lett Appl Biol 40:358–363

    Google Scholar 

  • Peralta-Yahya PP, Keasling JD (2010) Advanced biofuel production in microbes. Biotechnol J 5:147–162

    Article  CAS  Google Scholar 

  • Philbrook A, Alissandratos A, Easton CJ (2013) Biochemical processes for generating fuels and commodity chemicals from lignocellulosic biomass. In: Environmental biotechnology. InTech Open, London. https://doi.org/10.5772/55309

    Chapter  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    Article  CAS  Google Scholar 

  • Porth I, El-Kassaby YA (2015) Using Populus as a lignocellulosic feedstock for bioethanol. Biotechnol J 10:510–524

    Article  CAS  Google Scholar 

  • Rahnama N, Foo HL, Abdul Rahman NA, Ariff A, Md Shah UK (2014) Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production. BMC Biotechnol 14:103. https://doi.org/10.1186/s12896-014-0103-y

    Article  CAS  Google Scholar 

  • Razeghifard R (2013) Algal biofuels. Photosynth Res 117:207–219

    Article  CAS  Google Scholar 

  • Razzak SA, Hossain MM, Lucky RA, Bassi AS, de Lasa H (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing-a review. Renew Sustain Energy Rev 27:622–653

    Article  CAS  Google Scholar 

  • Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Technol Biotechnol 56:174–187

    Article  CAS  Google Scholar 

  • Rogers JN, Rosenberg JN, Guzman BJ, Oh VH, Mimbela LE, Ghassemi A, Betenbaugh MJ, Oyler GA, Donohue MD (2014) A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Res 4:76–88

    Article  Google Scholar 

  • Romero Victorica M, Soria MA, Batista-García RA et al (2020) Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes. Sci Rep 10:3864

    Article  CAS  Google Scholar 

  • Romero-Garcia JM, Martínez-Pati C, Ruiz E, Romero I, Castro E (2016) Ethanol production from olive stone hydrolysates by xylose fermenting microorganisms. Bioethanol 2:51–65

    Article  CAS  Google Scholar 

  • Romero-Guiza M, Vila J, Mata-Alvarez J, Chimenos J, Astals S (2016) The role of additives on anaerobic digestion: a review. Renew Sustain Energy Rev 58:1486–1499

    Article  CAS  Google Scholar 

  • Rupprecht J, Hankamer B, Mussgnug JH, Ananyev G, Dismukes C, Kruse O (2006) Perspectives and advances of biological H2 production in microorganisms. Appl Microbiol Biotechnol 72:442–449

    Article  CAS  Google Scholar 

  • Saifuddin N, Priatharsini P (2016) Developments in bio-hydrogen production from algae: a review. Res J Appl Sci Eng Technol 12:968–982

    Article  CAS  Google Scholar 

  • Saini J, Saini R, Tewar L (2015) Lignocellulosic agriculture waste as biomass feedstocks for second-generation bioethanol production: concepts and recent development. 3. Australas Biotechnol 5:337–353

    Google Scholar 

  • Sakurai H, Masukawa H (2007) Promoting R & D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria. Mar Biotechnol (NY) 9:128–145

    Article  CAS  Google Scholar 

  • Sarkar N, Ghosh S, Bannerjee S, Aikat K (2012) Bioethanol production from agriculture waste: an overview. Renew Energy 37:19–27

    Article  CAS  Google Scholar 

  • Schmidt BJ, Lin-Schmidt X, Chamberlin A, Salehi-Ashtiani K, Papin JA (2010) Metabolic systems analysis to advance algal biotechnology. Biotechnol J 5:660–670

    Article  CAS  Google Scholar 

  • Sekoai PT, Yoro K, Daramola MO (2016) Batch fermentative biohydrogen production process using immobilized anaerobic sludge from organic solid waste. Environments 38:1–10

    Google Scholar 

  • Senger RS (2010) Biofuel production improvement with genome-scale models: the role of cell composition. Biotechnol J 5:671–685

    Article  CAS  Google Scholar 

  • Shaishav S, Singh RN, Satyendra T (2013) Biohydrogen from algae: fuel of the future. Int Res J Environ Sci 2:44–47

    Google Scholar 

  • Sharma S, Kundu A, Basu S, Shetti NP, Aminabhavi TM (2020) Sustainable environmental management and related biofuel technologies. J Environ Manage 273:111096. https://doi.org/10.1016/j.jenvman.2020.111096

    Article  CAS  Google Scholar 

  • Show KY, Lee DJ, Chang JS (2013) Algal biomass dehydration. Bioresour Technol 135:720–729

    Article  CAS  Google Scholar 

  • Shreve MJ, Brennan RA (2019) Trace organic contaminant removal in six full-scale integrated fixed-film activated sludge (IFAS) systems treating municipal wastewater. Water Res 151:318–331

    Article  CAS  Google Scholar 

  • Simionato D, Basso S, Giacometti GM, Morosinotto T (2013) Optimization of light use efficiency for biofuel production in algae. Biophys Chem 182:71–78. https://doi.org/10.1016/j.bpc.2013.06.017

    Article  CAS  Google Scholar 

  • Singh V, Singh MP, Verma V, Singh P, Srivastava R, Singh AK (2016) Characteristics of cold adapted enzyme and its comparison with mesophilic and thermophilic counterpart. Cell Mol Biol 62:144

    Google Scholar 

  • Singh S, Goyal A, Moholkar VS (2018) Synthesis of bioethanol from invasive weeds: process design, optimization, and intensification with ultrasound. In: Bhaskar T, Pandey A, Mohan SV, Lee DJ, Khanal SK (eds) Waste biorefinery: potential and perspectives. Elsevier, Amsterdam, pp 445–485

    Chapter  Google Scholar 

  • Singh V, Mishra V (2020) Coronavirus disease 2019 (COVID-19): current situation and therapeutic options. Coronaviruses 1:1–11

    Google Scholar 

  • Singh V, Yadav VK, Mishra V (2020a) Nanotechnology: An application in biofuel production. In: Srivastava M, Srivastava N, Mishra P, Gupta V (eds) Nanomaterials in biofuel research. Clean energy production technology. Springer, Singapore, pp 143–160

    Chapter  Google Scholar 

  • Singh V, Singh MP, Mishra V (2020b) Bioremediation of toxic metal ions from coal washery effluent. Desalin Water Treat 197:300–318. https://doi.org/10.5004/dwt.2020.25996

    Article  CAS  Google Scholar 

  • Singh V, Singh N, Tabassum N, Mishra V (2020c) Microbial system: an emerging application in the bioenergy production. In: Srivastava N, Mishra PK (eds) Microbial strategies for techno-economic biofuel production. Springer, Singapore

    Google Scholar 

  • Singh N, Rai S, Singh V, Singh MP (2020d) Molecular characterization, pathogen-host interaction pathway and in silico approaches for vaccine design against COVID-19. J Chem Neuroanat 110:101874. https://doi.org/10.1016/j.jchemneu.2020.101874

  • Singh N, Singh V, Mishra D, Singh MP (2020e) An introduction of metagenomics and its application in microbial fuel production. In: Srivastava N, Srivastava M, Mishra P, Gupta VK (eds) Microbial strategies for techno-economic biofuel production. Clean energy production technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-7190-9_10

  • Sitarz AK, Mikkelsen JD, Højrup P, Meyer AS (2013) Identification of a laccase from Ganoderma lucidum CBS 229.93 having potential for enhancing cellulase catalyzed lignocellulose degradation. Enzyme Microb Technol 53:378–385

    Article  CAS  Google Scholar 

  • Sriwiriyarat T, Randall CW (2005) Performance of IFAS wastewater treatment processes for biological phosphorus removal. Water Res 39:3873–3884

    Article  CAS  Google Scholar 

  • Sticklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol 17:315–319

    Article  CAS  Google Scholar 

  • Stitt M, Lunn J, Usadel B (2010) Arabidopsis and primary photosynthetic metabolism- more than the icing on the cake. Plant J 61:1067–1091

    Article  CAS  Google Scholar 

  • Tabatabai B, Fathabad SG, Bonyi E, Ra**i S, Aslan K, Sitther V (2019) Nanoparticle-mediated impact on growth and fatty acid methyl ester composition in the cyanobacterium Fremyella diplosiphon. Bioenergy Res 12:409–418

    Article  CAS  Google Scholar 

  • Tao X, Xu T, Kempher ML, Liu J, Zhou J (2020) Precise promoter integration improves cellulose bioconversion and thermotolerance in clostridium cellulolyticum. Metab Eng 60:110–118

    Article  CAS  Google Scholar 

  • Thankappan S, Kandasamy S, Joshi B, Sorokina KN, Taran OP, Uthandi S (2018) Bioprospecting thermophilic glycosyl hydrolases, from hot springs of Himachal Pradesh, for biomass valorization. AMB Express 8:168. https://doi.org/10.1186/s13568-018-0690-4

    Article  CAS  Google Scholar 

  • Vanholme R, Van Acker R, Boerjan W (2010) Potential of Arabidopsis systems biology to advance the biofuel field. Trends Biotechnol 28:543–547

    Article  CAS  Google Scholar 

  • Voloshin RA, Kreslavski VD, Zharmukhamedov SK, Bedbenov VS, Ramakrishna S, Allakhverdiev SI (2015) Photoelectrochemical cells based on photosynthetic systems: a review. Biofuel Res J 6:227–235

    Article  Google Scholar 

  • Waqas S, Bilad MR, Man Z et al (2020) Recent progress in integrated fixed-film activated sludge process for wastewater treatment: a review. J Environ Manage 268:110718

    Article  CAS  Google Scholar 

  • Whitaker J, Field JL, Bernacchi CJ et al (2018) Consensus, uncertainties and challenges for perennial bioenergy crops and land use. Glob Change Biol Bioenergy 10:150–164

    Article  Google Scholar 

  • **ao YZ, Tu XM, Wang J et al (2003) Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH28-2. Appl Microbiol Biotechnol 60:700–707

    Article  CAS  Google Scholar 

  • Xue C, Zhao J, Chen L, Yang ST, Bai F (2017) Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by clostridium acetobutylicum. Biotechnol Adv 35:310–322

    Article  CAS  Google Scholar 

  • Yadav VK, Singh V, Mishra V (2019) Alkaline protease: a tool to manage solid waste and its utility in detergent industry. In: Tripathi V, Kumar P, Tripathi P, Kishore A, Kamle M (eds) Microbial genomics in sustainable agroecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-32-9860-6_14

  • Yang J, Son JH, Kim H et al (2019) Mevalonate production from ethanol by direct conversion through acetyl-CoA using recombinant Pseudomonas putida, a novel biocatalyst for terpenoid production. Microb Cell Fact 18:168

    Article  CAS  Google Scholar 

  • Yu D, Wang G, Xu F, Chen L (2012) Constitution and optimization on the performance of microbial fuel cell based on sulfate-reducing bacteria. Energy Procedia 16(Part C):1664–1670

    Article  CAS  Google Scholar 

  • Zhang TY, Wu YH, Hu HY (2014) Domestic wastewater treatment and biofuel production by using microalga Scenedesmus sp. ZTY1. Water Sci Technol 69:2492–2496

    Article  CAS  Google Scholar 

  • Zhang J, Liu Y, Sun Y, Wang H, Cao X, Li X (2020) Effect of soil type on heavy metals removal in bioelectrochemical system. Bioelectrochemistry 136:107596

    Article  CAS  Google Scholar 

  • Zhou J, Li Y (2010) Engineering cyanobacteria for fuels and chemicals production. Protein Cell 1:207–210

    Article  CAS  Google Scholar 

  • Zhu LY, Zong MH, Wu H (2008) Efficient lipid production with T. fermentas and its use for biodiesel preparation. Bioresour Technol 99:7881–7885

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Indian Institute of Technology (IIT), BHU, Varanasi, for providing Internet facility, working place, and instrumentation facilities for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, V., Tiwari, R., Chaturvedi, V.K., Singh, N., Mishra, V. (2021). Microbiological Aspects of Bioenergy Production: Recent Update and Future Directions. In: Srivastava, M., Srivastava, N., Singh, R. (eds) Bioenergy Research: Revisiting Latest Development. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-33-4615-4_2

Download citation

Publish with us

Policies and ethics

Navigation