Interaction Between Innate Lymphoid Cells and the Nervous System

  • Chapter
  • First Online:
Innate Lymphoid Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1365))

Abstract

The interaction between the immune system and the nervous system remains an intriguing enigma. Recent studies indicate that innate lymphoid cells (ILCs), a unique family of innate effector cells, participate in intense cross talk with the nervous system. In the mucosal barrier sites, ILCs have been found to co-localize with neurons, nerves, glial cell projectors, and neuroendocrine cells. The cross talk between ILCs and peripheral nervous system orchestrates mucosal homeostasis and immunity. In addition, the barrier tissues of the central nervous system (CNS) also provide conductive microenvironment for ILC development and maintenance. Activities of CNS-associated ILCs impact the outcome of various CNS disorders. In this chapter, we review and discuss the intricate and bidirectional interaction between ILCs and nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chu C, Artis D, Chiu IM. Neuro-immune interactions in the tissues. Immunity. 2020;52(3):464–74.

    Article  CAS  PubMed  Google Scholar 

  2. Abdel-Haq R, Schlachetzki JCM, Glass CK, Mazmanian SK. Microbiome-microglia connections via the gut-brain axis. J Exp Med. 2019;216(1):41–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huh JR, Veiga-Fernandes H. Neuroimmune circuits in inter-organ communication. Nat Rev Immunol. 2020;20(4):217–28.

    Article  CAS  PubMed  Google Scholar 

  4. Kabata H, Artis D. Neuro-immune crosstalk and allergic inflammation. J Clin Invest. 2019;129(4):1475–82.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Blake KJ, Jiang XR, Chiu IM. Neuronal regulation of immunity in the skin and lungs. Trends Neurosci. 2019;42(8):537–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alves de Lima K, Rustenhoven J, Kipnis J. Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Annu Rev Immunol. 2020;38:597–620.

    Article  CAS  PubMed  Google Scholar 

  7. Rua R, McGavern DB. Advances in meningeal immunity. Trends Mol Med. 2018;24(6):542–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang Q, Bhandoola A. The development of adult innate lymphoid cells. Curr Opin Immunol. 2016;39:114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gasteiger G, Fan X, Dikiy S, Lee SY, Rudensky AY. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science. 2015;350(6263):981–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 2012;9(5):286–94.

    Article  CAS  PubMed  Google Scholar 

  11. Weigand LA, Myers AC. Synaptic and membrane properties of parasympathetic ganglionic neurons innervating mouse trachea and bronchi. Am J Physiol Lung Cell Mol Physiol. 2010;298(4):L593–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuo CS, Krasnow MA. Formation of a neurosensory organ by epithelial cell slithering. Cell. 2015;163(2):394–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Noguchi M, Sumiyama K, Morimoto M. Directed migration of pulmonary neuroendocrine cells toward airway branches organizes the stereotypic location of neuroepithelial bodies. Cell Rep. 2015;13(12):2679–86.

    Article  CAS  PubMed  Google Scholar 

  14. Dahlgren MW, Jones SW, Cautivo KM, Dubinin A, Ortiz-Carpena JF, Farhat S, et al. Adventitial stromal cells define group 2 innate lymphoid cell tissue niches. Immunity. 2019;50(3):707–22 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cardoso V, Chesne J, Ribeiro H, Garcia-Cassani B, Carvalho T, Bouchery T, et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature. 2017;549(7671):277–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klose CSN, Mahlakoiv T, Moeller JB, Rankin LC, Flamar AL, Kabata H, et al. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature. 2017;549(7671):282–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moriyama S, Brestoff JR, Flamar AL, Moeller JB, Klose CSN, Rankin LC, et al. beta2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science. 2018;359(6379):1056–61.

    Article  CAS  PubMed  Google Scholar 

  18. Sui P, Wiesner DL, Xu J, Zhang Y, Lee J, Van Dyken S, et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science. 2018;360(6393):8546.

    Article  CAS  Google Scholar 

  19. Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour RE, Nyman J, Dionne D, et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature. 2017;549(7672):351–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Inclan-Rico JM, Ponessa JJ, Valero-Pacheco N, Hernandez CM, Sy CB, Lemenze AD, et al. Basophils prime group 2 innate lymphoid cells for neuropeptide-mediated inhibition. Nat Immunol. 2020;21(10):1181–93.

    Article  CAS  PubMed  Google Scholar 

  21. Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, Molofsky AB, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502(7470):245–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nagashima H, Mahlakoiv T, Shih HY, Davis FP, Meylan F, Huang Y, et al. Neuropeptide CGRP limits group 2 innate lymphoid cell responses and constrains type 2 inflammation. Immunity. 2019;51(4):682–95 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gadani SP, Smirnov I, Smith AT, Overall CC, Kipnis J. Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury. J Exp Med. 2017;214(2):285–96.

    Article  CAS  PubMed  Google Scholar 

  24. Chu C, Parkhurst CN, Zhang W, Zhou L, Yano H, Arifuzzaman M, et al. The ChAT-acetylcholine pathway promotes group 2 innate lymphoid cell responses and anti-helminth immunity. Sci Immunol. 2021;6(57):3218.

    Article  CAS  Google Scholar 

  25. Roberts LB, Schnoeller C, Berkachy R, Darby M, Pillaye J, Oudhoff MJ, et al. Acetylcholine production by group 2 innate lymphoid cells promotes mucosal immunity to helminths. Sci Immunol. 2021;6(57):0359.

    Article  Google Scholar 

  26. Yuan F, Jiang L, Li Q, Sokulsky L, Wanyan Y, Wang L, et al. A selective alpha7 nicotinic acetylcholine receptor agonist, PNU-282987, attenuates ILC2s activation and Alternaria-induced airway inflammation. Front Immunol. 2020;11:598165.

    Article  CAS  PubMed  Google Scholar 

  27. Galle-Treger L, Suzuki Y, Patel N, Sankaranarayanan I, Aron JL, Maazi H, et al. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity. Nat Commun. 2016;7:13202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seillet C, Luong K, Tellier J, Jacquelot N, Shen RD, Hickey P, et al. The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity. Nat Immunol. 2020;21(2):168–77.

    Article  CAS  PubMed  Google Scholar 

  29. Talbot J, Hahn P, Kroehling L, Nguyen H, Li D, Littman DR. Feeding-dependent VIP neuron-ILC3 circuit regulates the intestinal barrier. Nature. 2020;579(7800):575–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ibiza S, Garcia-Cassani B, Ribeiro H, Carvalho T, Almeida L, Marques R, et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature. 2016;535(7612):440–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dalli J, Colas RA, Arnardottir H, Serhan CN. Vagal regulation of group 3 innate lymphoid cells and the immunoresolvent PCTR1 controls infection resolution. Immunity. 2017;46(1):92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wieduwild E, Girard-Madoux MJ, Quatrini L, Laprie C, Chasson L, Rossignol R, et al. β2-adrenergic signals downregulate the innate immune response and reduce host resistance to viral infection. J Exp Med. 2020;217(4):e20190554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kanemi O, Zhang X, Sakamoto Y, Ebina M, Nagatomi R. Acute stress reduces intraparenchymal lung natural killer cells via beta-adrenergic stimulation. Clin Exp Immunol. 2005;139(1):25–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Whalen MM, Bankhurst AD. Effects of beta-adrenergic receptor activation, cholera toxin and forskolin on human natural killer cell function. Biochem J. 1990;272(2):327–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rosenne E, Sorski L, Shaashua L, Neeman E, Matzner P, Levi B, et al. In vivo suppression of NK cell cytotoxicity by stress and surgery: glucocorticoids have a minor role compared to catecholamines and prostaglandins. Brain Behav Immun. 2014;37:207–19.

    Article  CAS  PubMed  Google Scholar 

  36. Theorell J, Gustavsson AL, Tesi B, Sigmundsson K, Ljunggren HG, Lundback T, et al. Immunomodulatory activity of commonly used drugs on Fc-receptor-mediated human natural killer cell activation. Cancer Immunol Immunother. 2014;63(6):627–41.

    Article  CAS  PubMed  Google Scholar 

  37. Takamoto T, Hori Y, Koga Y, Toshima H, Hara A, Yokoyama MM. Norepinephrine inhibits human natural killer cell activity in vitro. Int J Neurosci. 1991;58(1–2):127–31.

    Article  CAS  PubMed  Google Scholar 

  38. Tarr AJ, Powell ND, Reader BF, Bhave NS, Roloson AL, Carson WE 3rd, et al. beta-Adrenergic receptor mediated increases in activation and function of natural killer cells following repeated social disruption. Brain Behav Immun. 2012;26(8):1226–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hellstrand K, Hermodsson S, Strannegard O. Evidence for a beta-adrenoceptor-mediated regulation of human natural killer cells. J Immunol. 1985;134(6):4095–9.

    CAS  PubMed  Google Scholar 

  40. Glac W, Borman A, Badtke P, Stojek W, Orlikowska A, Tokarski J. Amphetamine enhances natural killer cytotoxic activity via beta-adrenergic mechanism. J Physiol Pharmacol. 2006;57(Suppl 11):125–32.

    PubMed  Google Scholar 

  41. Benschop RJ, Schedlowski M, Wienecke H, Jacobs R, Schmidt RE. Adrenergic control of natural killer cell circulation and adhesion. Brain Behav Immun. 1997;11(4):321–32.

    Article  CAS  PubMed  Google Scholar 

  42. Schedlowski M, Hosch W, Oberbeck R, Benschop RJ, Jacobs R, Raab HR, et al. Catecholamines modulate human NK cell circulation and function via spleen-independent beta 2-adrenergic mechanisms. J Immunol. 1996;156(1):93–9.

    CAS  PubMed  Google Scholar 

  43. Mikulak J, Bozzo L, Roberto A, Pontarini E, Tentorio P, Hudspeth K, et al. Dopamine inhibits the effector functions of activated NK cells via the upregulation of the D5 receptor. J Immunol. 2014;193(6):2792–800.

    Article  CAS  PubMed  Google Scholar 

  44. Nozaki H, Hozumi K, Nishimura T, Habu S. Regulation of NK activity by the administration of bromocriptine in haloperidol-treated mice. Brain Behav Immun. 1996;10(1):17–26.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao W, Huang Y, Liu Z, Cao BB, Peng YP, Qiu YH. Dopamine receptors modulate cytotoxicity of natural killer cells via cAMP-PKA-CREB signaling pathway. PLoS One. 2013;8(6):e65860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pacheco-Lopez G, Niemi MB, Kou W, Bildhauser A, Gross CM, Goebel MU, et al. Central catecholamine depletion inhibits peripheral lymphocyte responsiveness in spleen and blood. J Neurochem. 2003;86(4):1024–31.

    Article  CAS  PubMed  Google Scholar 

  47. Reder A, Checinski M, Chelmicka-Schorr E. The effect of chemical sympathectomy on natural killer cells in mice. Brain Behav Immun. 1989;3(2):110–8.

    Article  CAS  PubMed  Google Scholar 

  48. Dishman RK, Hong S, Soares J, Edwards GL, Bunnell BN, Jaso-Friedmann L, et al. Activity-wheel running blunts suppression of splenic natural killer cell cytotoxicity after sympathectomy and footshock. Physiol Behav. 2000;71(3–4):297–304.

    Article  CAS  PubMed  Google Scholar 

  49. Rustenhoven J, Drieu A, Mamuladze T, de Lima KA, Dykstra T, Wall M, et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell. 2021;184(4):1000–16 e27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brioschi S, Wang WL, Peng V, Wang M, Shchukina I, Greenberg ZJ, et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science. 2021;373(6553):eabf9277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cugurra A, Mamuladze T, Rustenhoven J, Dykstra T, Beroshvili G, Greenberg ZJ, et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science. 2021;373(6553):eabf7844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baruch K, Ron-Harel N, Gal H, Deczkowska A, Shifrut E, Ndifon W, et al. CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc Natl Acad Sci. 2013;110(6):2264–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fung ITH, Sankar P, Zhang Y, Robison LS, Zhao X, D'Souza SS, et al. Activation of group 2 innate lymphoid cells alleviates aging-associated cognitive decline. J Exp Med. 2020;217(4):e20190915.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Strominger I, Elyahu Y, Berner O, Reckhow J, Mittal K, Nemirovsky A, et al. The choroid plexus functions as a niche for T-cell stimulation within the central nervous system. Front Immunol. 2018;9:1066.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Baruch K, Schwartz M. CNS-specific T cells shape brain function via the choroid plexus. Brain Behav Immun. 2013;34:11–6.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Y, Fung ITH, Sankar P, Chen X, Robison LS, Ye L, et al. Depletion of NK cells improves cognitive function in the Alzheimer disease mouse model. J Immunol. 2020;205(2):502–10.

    Article  CAS  PubMed  Google Scholar 

  57. Sedgwick AJ, Ghazanfari N, Constantinescu P, Mantamadiotis T, Barrow AD. The role of NK cells and innate lymphoid cells in brain cancer. Front Immunol. 2020;11:1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang I, Han SJ, Sughrue ME, Tihan T, Parsa AT. Immune cell infiltrate differences in pilocytic astrocytoma and glioblastoma: evidence of distinct immunological microenvironments that reflect tumor biology. J Neurosurg. 2011;115(3):505–11.

    Article  CAS  PubMed  Google Scholar 

  59. Domingues PH, Teodosio C, Ortiz J, Sousa P, Otero A, Maillo A, et al. Immunophenotypic identification and characterization of tumor cells and infiltrating cell populations in meningiomas. Am J Pathol. 2012;181(5):1749–61.

    Article  CAS  PubMed  Google Scholar 

  60. Domingues P, Gonzalez-Tablas M, Otero A, Pascual D, Miranda D, Ruiz L, et al. Tumor infiltrating immune cells in gliomas and meningiomas. Brain Behav Immun. 2016;53:1–15.

    Article  CAS  PubMed  Google Scholar 

  61. Zhu C, Zou C, Guan G, Guo Q, Yan Z, Liu T, et al. Development and validation of an interferon signature predicting prognosis and treatment response for glioblastoma. Onco Targets Ther. 2019;8(9):e1621677.

    Google Scholar 

  62. Lu J, Li H, Chen Z, Fan L, Feng S, Cai X, et al. Identification of 3 subpopulations of tumor-infiltrating immune cells for malignant transformation of low-grade glioma. Cancer Cell Int. 2019;19:265.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Vauleon E, Tony A, Hamlat A, Etcheverry A, Chiforeanu DC, Menei P, et al. Immune genes are associated with human glioblastoma pathology and patient survival. BMC Med Genet. 2012;5:41.

    CAS  Google Scholar 

  64. Zhong QY, Fan EX, Feng GY, Chen QY, Gou XX, Yue GJ, et al. A gene expression-based study on immune cell subtypes and glioma prognosis. BMC Cancer. 2019;19(1):1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Castriconi R, Daga A, Dondero A, Zona G, Poliani PL, Melotti A, et al. NK cells recognize and kill human glioblastoma cells with stem cell-like properties. J Immunol. 2009;182(6):3530–9.

    Article  CAS  PubMed  Google Scholar 

  66. Haspels HN, Rahman MA, Joseph JV, Gras Navarro A, Chekenya M. Glioblastoma stem-like cells are more susceptible than differentiated cells to natural killer cell lysis mediated through killer immunoglobulin-like receptors-human leukocyte antigen ligand mismatch and activation receptor-ligand interactions. Front Immunol. 2018;9:1345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Sivori S, Parolini S, Marcenaro E, Castriconi R, Pende D, Millo R, et al. Involvement of natural cytotoxicity receptors in human natural killer cell-mediated lysis of neuroblastoma and glioblastoma cell lines. J Neuroimmunol. 2000;107(2):220–5.

    Article  CAS  PubMed  Google Scholar 

  68. Castriconi R, Dondero A, Corrias MV, Lanino E, Pende D, Moretta L, et al. Natural killer cell-mediated killing of freshly isolated neuroblastoma cells: critical role of DNAX accessory molecule-1-poliovirus receptor interaction. Cancer Res. 2004;64(24):9180–4.

    Article  CAS  PubMed  Google Scholar 

  69. Barrow AD, Edeling MA, Trifonov V, Luo J, Goyal P, Bohl B, et al. Natural killer cells control tumor growth by sensing a growth factor. Cell. 2018;172(3):534–48 e19.

    Article  CAS  PubMed  Google Scholar 

  70. Castriconi R, Dondero A, Augugliaro R, Cantoni C, Carnemolla B, Sementa AR, et al. Identification of 4Ig-B7-H3 as a neuroblastoma-associated molecule that exerts a protective role from an NK cell-mediated lysis. Proc Natl Acad Sci. 2004;101(34):12640–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baker GJ, Chockley P, Yadav VN, Doherty R, Ritt M, Sivaramakrishnan S, et al. Natural killer cells eradicate galectin-1-deficient glioma in the absence of adaptive immunity. Cancer Res. 2014;74(18):5079–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Biron CA, Byron KS, Sullivan JL. Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med. 1989;320(26):1731–5.

    Article  CAS  PubMed  Google Scholar 

  73. Almerigogna F, Fassio F, Giudizi MG, Biagiotti R, Manuelli C, Chiappini E, et al. Natural killer cell deficiencies in a consecutive series of children with herpetic encephalitis. Int J Immunopathol Pharmacol. 2011;24(1):231–8.

    Article  CAS  PubMed  Google Scholar 

  74. Chastain EM, Getts DR, Miller SD. Deficient natural killer dendritic cell responses underlay the induction of Theiler's virus-induced autoimmunity. MBio. 2015;6(4):e01175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alsharifi M, Lobigs M, Simon MM, Kersten A, Muller K, Koskinen A, et al. NK cell-mediated immunopathology during an acute viral infection of the CNS. Eur J Immunol. 2006;36(4):887–96.

    Article  CAS  PubMed  Google Scholar 

  76. Adler H, Beland JL, Del-Pan NC, Kobzik L, Sobel RA, Rimm IJ. In the absence of T cells, natural killer cells protect from mortality due to HSV-1 encephalitis. J Neuroimmunol. 1999;93(1–2):208–13.

    Article  CAS  PubMed  Google Scholar 

  77. ** Y, Dons L, Kristensson K, Rottenberg ME. Neural route of cerebral Listeria monocytogenes murine infection: role of immune response mechanisms in controlling bacterial neuroinvasion. Infect Immun. 2001;69(2):1093–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Khanolkar A, Hartwig SM, Haag BA, Meyerholz DK, Ep** LL, Haring JS, et al. Protective and pathologic roles of the immune response to mouse hepatitis virus type 1: implications for severe acute respiratory syndrome. J Virol. 2009;83(18):9258–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Taylor K, Kolokoltsova O, Patterson M, Poussard A, Smith J, Estes DM, et al. Natural killer cell mediated pathogenesis determines outcome of central nervous system infection with Venezuelan equine encephalitis virus in C3H/HeN mice. Vaccine. 2012;30(27):4095–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mitchell AJ, Yau B, McQuillan JA, Ball HJ, Too LK, Abtin A, et al. Inflammasome-dependent IFN-gamma drives pathogenesis in Streptococcus pneumoniae meningitis. J Immunol. 2012;189(10):4970–80.

    Article  CAS  PubMed  Google Scholar 

  81. Hansen DS, Bernard NJ, Nie CQ, Schofield L. NK cells stimulate recruitment of CXCR3+ T cells to the brain during Plasmodium berghei-mediated cerebral malaria. J Immunol. 2007;178(9):5779–88.

    Article  CAS  PubMed  Google Scholar 

  82. Hansen DS, Evans KJ, D'Ombrain MC, Bernard NJ, Sexton AC, Buckingham L, et al. The natural killer complex regulates severe malarial pathogenesis and influences acquired immune responses to Plasmodium berghei ANKA. Infect Immun. 2005;73(4):2288–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gan Y, Liu Q, Wu W, Yin JX, Bai XF, Shen R, et al. Ischemic neurons recruit natural killer cells that accelerate brain infarction. Proc Natl Acad Sci. 2014;111(7):2704–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang Y, Gao Z, Wang D, Zhang T, Sun B, Mu L, et al. Accumulation of natural killer cells in ischemic brain tissues and the chemotactic effect of IP-10. J Neuroinflammation. 2014;11:79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li Z, Li M, Shi SX, Yao N, Cheng X, Guo A, et al. Brain transforms natural killer cells that exacerbate brain edema after intracerebral hemorrhage. J Exp Med. 2020;217(12):e20200213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang S, de Fabritus L, Kumar PA, Werner Y, Siret C, Simic M, et al. Brain endothelial CXCL12 attracts protective natural killer cells during ischemic stroke. bioRxiv. 2021; https://doi.org/10.1101/2021.02.18.431426.

  87. Liu Q, ** WN, Liu Y, Shi K, Sun H, Zhang F, et al. Brain ischemia suppresses immunity in the periphery and brain via different neurogenic innervations. Immunity. 2017;46(3):474–87.

    Article  CAS  PubMed  Google Scholar 

  88. Jiang C, Kong W, Wang Y, Ziai W, Yang Q, Zuo F, et al. Changes in the cellular immune system and circulating inflammatory markers of stroke patients. Oncotarget. 2017;8(2):3553–67.

    Article  PubMed  Google Scholar 

  89. Han S, Lin YC, Wu T, Salgado AD, Mexhitaj I, Wuest SC, et al. Comprehensive immunophenoty** of cerebrospinal fluid cells in patients with neuroimmunological diseases. J Immunol. 2014;192(6):2551–63.

    Article  CAS  PubMed  Google Scholar 

  90. Rodriguez-Martin E, Picon C, Costa-Frossard L, Alenda R, Sainz de la Maza S, Roldan E, et al. Natural killer cell subsets in cerebrospinal fluid of patients with multiple sclerosis. Clin Exp Immunol. 2015;180(2):243–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Caruana P, Lemmert K, Ribbons K, Lea R, Lechner-Scott J. Natural killer cell subpopulations are associated with MRI activity in a relapsing-remitting multiple sclerosis patient cohort from Australia. Mult Scler. 2017;23(11):1479–87.

    Article  CAS  PubMed  Google Scholar 

  92. Gross CC, Schulte-Mecklenbeck A, Runzi A, Kuhlmann T, Posevitz-Fejfar A, Schwab N, et al. Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation. Proc Natl Acad Sci. 2016;113(21):E2973–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jiang W, Chai NR, Maric D, Bielekova B. Unexpected role for granzyme K in CD56bright NK cell-mediated immunoregulation of multiple sclerosis. J Immunol. 2011;187(2):781–90.

    Article  CAS  PubMed  Google Scholar 

  94. Xu W, Fazekas G, Hara H, Tabira T. Mechanism of natural killer (NK) cell regulatory role in experimental autoimmune encephalomyelitis. J Neuroimmunol. 2005;163(1–2):24–30.

    Article  CAS  PubMed  Google Scholar 

  95. Zhang B, Yamamura T, Kondo T, Fujiwara M, Tabira T. Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J Exp Med. 1997;186(10):1677–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hao J, Liu R, Piao W, Zhou Q, Vollmer TL, Campagnolo DI, et al. Central nervous system (CNS)-resident natural killer cells suppress Th17 responses and CNS autoimmune pathology. J Exp Med. 2010;207(9):1907–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jiang W, Li D, Han R, Zhang C, ** WN, Wood K, et al. Acetylcholine-producing NK cells attenuate CNS inflammation via modulation of infiltrating monocytes/macrophages. Proc Natl Acad Sci. 2017;114(30):E6202–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Leavenworth JW, Schellack C, Kim HJ, Lu L, Spee P, Cantor H. Analysis of the cellular mechanism underlying inhibition of EAE after treatment with anti-NKG2A F(ab')2. Proc Natl Acad Sci. 2010;107(6):2562–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lu L, Ikizawa K, Hu D, Werneck MB, Wucherpfennig KW, Cantor H. Regulation of activated CD4+ T cells by NK cells via the Qa-1-NKG2A inhibitory pathway. Immunity. 2007;26(5):593–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu Q, Sanai N, ** WN, La Cava A, Van Kaer L, Shi FD. Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation. Nat Neurosci. 2016;19(2):243–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Solerte SB, Fioravanti M, Pascale A, Ferrari E, Govoni S, Battaini F. Increased natural killer cell cytotoxicity in Alzheimer's disease may involve protein kinase C dysregulation. Neurobiol Aging. 1998;19(3):191–9.

    Article  CAS  PubMed  Google Scholar 

  102. Solana C, Tarazona R, Solana R. Immunosenescence of natural killer cells, inflammation, and Alzheimer's disease. Int J Alzheimers Dis. 2018;2018:3128758.

    PubMed  PubMed Central  Google Scholar 

  103. Schindowski K, Peters J, Gorriz C, Schramm U, Weinandi T, Leutner S, et al. Apoptosis of CD4+ T and natural killer cells in Alzheimer's disease. Pharmacopsychiatry. 2006;39(6):220–8.

    Article  CAS  PubMed  Google Scholar 

  104. Prolo P, Chiappelli F, Angeli A, Dovio A, Perotti P, Pautasso M, et al. Physiologic modulation of natural killer cell activity as an index of Alzheimer’s disease progression. Bioinformation. 2007;1(9):363–6.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Martins LC, Rocha NP, Torres KC, Dos Santos RR, Franca GS, de Moraes EN, et al. Disease-specific expression of the serotonin-receptor 5-HT(2C) in natural killer cells in Alzheimer's dementia. J Neuroimmunol. 2012;251(1–2):73–9.

    Article  CAS  PubMed  Google Scholar 

  106. Masera RG, Prolo P, Sartori ML, Staurenghi A, Griot G, Ravizza L, et al. Mental deterioration correlates with response of natural killer (NK) cell activity to physiological modifiers in patients with short history of Alzheimer's disease. Psychoneuroendocrinology. 2002;27(4):447–61.

    Article  CAS  PubMed  Google Scholar 

  107. Solerte SB, Cravello L, Ferrari E, Fioravanti M. Overproduction of IFN-gamma and TNF-alpha from natural killer (NK) cells is associated with abnormal NK reactivity and cognitive derangement in Alzheimer’s disease. Ann N Y Acad Sci. 2000;917:331–40.

    Article  CAS  PubMed  Google Scholar 

  108. Solerte SB, Fioravanti M, Severgnini S, Locatelli M, Renzullo M, Pezza N, et al. Enhanced cytotoxic response of natural killer cells to interleukin-2 in Alzheimer's disease. Dementia. 1996;7(6):343–8.

    CAS  PubMed  Google Scholar 

  109. Mihara T, Nakashima M, Kuroiwa A, Akitake Y, Ono K, Hosokawa M, et al. Natural killer cells of Parkinson's disease patients are set up for activation: a possible role for innate immunity in the pathogenesis of this disease. Parkinsonism Relat Disord. 2008;14(1):46–51.

    Article  PubMed  Google Scholar 

  110. Cen L, Yang C, Huang S, Zhou M, Tang X, Li K, et al. Peripheral lymphocyte subsets as a marker of Parkinson’s disease in a Chinese population. Neurosci Bull. 2017;33(5):493–500.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Niwa F, Kuriyama N, Nakagawa M, Imanishi J. Effects of peripheral lymphocyte subpopulations and the clinical correlation with Parkinson’s disease. Geriatr Gerontol Int. 2012;12(1):102–7.

    Article  PubMed  Google Scholar 

  112. Earls RH, Menees KB, Chung J, Gutekunst CA, Lee HJ, Hazim MG, et al. NK cells clear alpha-synuclein and the depletion of NK cells exacerbates synuclein pathology in a mouse model of alpha-synucleinopathy. Proc Natl Acad Sci. 2020;117(3):1762–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Baban B, Braun M, Khodadadi H, Ward A, Alverson K, Malik A, et al. AMPK induces regulatory innate lymphoid cells after traumatic brain injury. JCI Insight. 2021;6(1):e126766.

    Article  PubMed Central  Google Scholar 

  114. Zelco A, Rocha-Ferreira E, Nazmi A, Ardalan M, Chumak T, Nilsson G, et al. Type 2 innate lymphoid cells accumulate in the brain after hypoxia-Ischemia but do not contribute to the development of preterm brain injury. Front Cell Neurosci. 2020;14:249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Besnard AG, Guabiraba R, Niedbala W, Palomo J, Reverchon F, Shaw TN, et al. IL-33-mediated protection against experimental cerebral malaria is linked to induction of type 2 innate lymphoid cells, M2 macrophages and regulatory T cells. PLoS Pathog. 2015;11(2):e1004607.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Hirose S, Jahani PS, Wang S, Jaggi U, Tormanen K, Yu J, et al. Type 2 innate lymphoid cells induce CNS demyelination in an HSV-IL-2 mouse model of multiple sclerosis. iScience. 2020;23(10):101549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Russi AE, Ebel ME, Yang Y, Brown MA. Male-specific IL-33 expression regulates sex-dimorphic EAE susceptibility. Proc Natl Acad Sci. 2018;115(7):E1520–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Russi AE, Walker-Caulfield ME, Ebel ME, Brown MA. Cutting edge: c-Kit signaling differentially regulates type 2 innate lymphoid cell accumulation and susceptibility to central nervous system demyelination in male and female SJL mice. J Immunol. 2015;194(12):5609–13.

    Article  CAS  PubMed  Google Scholar 

  119. Hatfield JK, Brown MA. Group 3 innate lymphoid cells accumulate and exhibit disease-induced activation in the meninges in EAE. Cell Immunol. 2015;297(2):69–79.

    Article  CAS  PubMed  Google Scholar 

  120. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Louveau A, Herz J, Alme MN, Salvador AF, Dong MQ, Viar KE, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21(10):1380–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 2018;560(7717):185–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Da Mesquita S, Papadopoulos Z, Dykstra T, Brase L, Farias FG, Wall M, et al. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. Nature. 2021;593(7858):255–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Bolte AC, Dutta AB, Hurt ME, Smirnov I, Kovacs MA, McKee CA, et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat Commun. 2020;11(1):4524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30(3):229–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Grazda, R., Yang, Q. (2022). Interaction Between Innate Lymphoid Cells and the Nervous System. In: Sun, XH. (eds) Innate Lymphoid Cells. Advances in Experimental Medicine and Biology, vol 1365. Springer, Singapore. https://doi.org/10.1007/978-981-16-8387-9_9

Download citation

Publish with us

Policies and ethics

Navigation