Dietary Sources of Anthocyanins

  • Chapter
  • First Online:
Anthocyanins

Abstract

Anthocyanins are water-soluble pigments widely distributed in fruits and vegetables. The compound has important functions in the propagation, protection, and physiology of plants. Moreover, the antioxidative and anti-inflammatory features of anthocyanins also make them promising ingredients in promoting human health. Emerging evidence shows that the biosynthesis and structure of anthocyanins are influenced by the genetic background and growth environment of the source, which varies substantially with plants. Thus, we will summarize the published results regarding the anthocyanin profiles in fruits, vegetables, grains, and herbs in this chapter, which is not only important to its application in food industry but also important to the development of dietotherapies containing anthocyanins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson ET, Mark AB, Patrick FD. Colored and white sectors from star-patterned petunia flowers display differential resistance to corn earworm and cabbage looper larvae. J Chem Ecol. 2008;34:757–65.

    Article  CAS  PubMed  Google Scholar 

  2. Saito N, Jeffrey BH. Correlations between anthocyanin type, pollinator and flower colour in the labiatae. Phytochemistry. 1992;31:3009–15.

    Article  CAS  Google Scholar 

  3. Gould KS, McKelvie J, Markham KR. Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ. 2002;25:1261–9.

    Article  CAS  Google Scholar 

  4. Pereira SR, Pereira R, Figueiredo I, Freitas V, Dinis TCP, Almeida LM. Comparison of anti-inflammatory activities of an anthocyanin-rich fraction from Portuguese blueberries (Vaccinium corymbosum L.) and 5-aminosalicylic acid in a TNBS-induced colitis rat model. PLoS One. 2017;12:e0174116.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shah SA, Amin FU, Khan M, et al. Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain. J Neuroinflammation. 2016;13:286.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Takikawa M, Inoue S, Horio F, Tsuda T. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice. J Nutr. 2010;140:527–33.

    Article  CAS  PubMed  Google Scholar 

  7. Wallace TC, Giusti MM. Anthocyanins in health and disease. Boca Raton, FL: CRC Press; 2013.

    Book  Google Scholar 

  8. Kähkönen MP, Heinonen M. Antioxidant activity of anthocyanins and their aglycones. J Agric Food Chem. 2003;51:628–33.

    Article  PubMed  Google Scholar 

  9. Santos-Buelga C, Mateus N, De Freitas V. Anthocyanins. Plant pigments and beyond. J Agric Food Chem. 2014;62:6879.

    Article  CAS  PubMed  Google Scholar 

  10. Oertel A, Matros A, Hartmann A, et al. Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. Planta. 2017;246:281–97.

    Article  CAS  PubMed  Google Scholar 

  11. Ortega-Regules A, Romero-Cascales I, López-Roca JM, Ros-García JM, Gómez-Plaza E. Anthocyanin fingerprint of grapes: environmental and genetic variations. J Sci Food Agric. 2006;86:1460–7.

    Article  CAS  Google Scholar 

  12. Timmers MA, Grace MH, Yousef GG, Lila MA. Inter-and intra-seasonal changes in anthocyanin accumulation and global metabolite profiling of six blueberry genotypes. J Food Compos Anal. 2017;59:105–10.

    Article  CAS  Google Scholar 

  13. Kovinich N, Kayanja G, Chanoca A, Riedl K, Otegui MS, Grotewold E. Not all anthocyanins are born equal: distinct patterns induced by stress in Arabidopsis. Planta. 2014;240:931–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qian L, Yanji L. Study on the secondary matter and anthocyanin components of blackberry fruit. N Hortic. 2011;16:26–30.

    Google Scholar 

  15. Mazza G. Anthocyanins in fruits, vegetables, and grains. Boca Raton, FL: CRC Press; 2018.

    Book  Google Scholar 

  16. Fan-Chiang HJ, Wrolstad RE. Anthocyanin pigment composition of blackberries. J Food Sci. 2005;70:C198–202.

    Article  CAS  Google Scholar 

  17. Jordheim M, Enerstvedt KH, Andersen ØM. Identification of cyanidin 3-O-β-(6 ″-(3-Hydroxy-3-methylglutaroyl) glucoside) and other anthocyanins from wild and cultivated blackberries. J Agric Food Chem. 2011;59:7436–40.

    Article  CAS  PubMed  Google Scholar 

  18. Dongnan L. Study on the quality characteristics of blueberry raw materials and their fingerprints. Thesis of Shenyang Agricultural University. 2016.

    Google Scholar 

  19. Gao L, Mazza G. Characterization of acetylated anthocyanins in lowbush blueberries. J Liq Chromatogr. 1995;18:245–59.

    Article  CAS  Google Scholar 

  20. Wang E, Yin Y, Xu C, Liu J. Isolation of high-purity anthocyanin mixtures and monomers from blueberries using combined chromatographic techniques. J Chromatogr A. 2014;1327:39–48.

    Article  CAS  PubMed  Google Scholar 

  21. Dugo P, Mondello L, Errante G, Zappia G, Dugo G. Identification of anthocyanins in berries by narrow-bore high-performance liquid chromatography with electrospray ionization detection. J Agric Food Chem. 2001;49:3987–92.

    Article  CAS  PubMed  Google Scholar 

  22. Vorsa N, Polashock J, Cunningham D, Roderick R. Genetic inferences and breeding implications from analysis of cranberry germplasm anthocyanin profiles. J Am Soc Hortic Sci. 2003;128:691–7.

    Article  CAS  Google Scholar 

  23. Lopes-da-Silva F, de Pascual-Teresa S, Rivas-Gonzalo J, Santos-Buelga C. Identification of anthocyanin pigments in strawberry (cv Camarosa) by LC using DAD and ESI-MS detection. Eur Food Res Technol. 2002;214:248–53.

    Article  CAS  Google Scholar 

  24. Cerezo AB, Cuevas E, Winterhalter P, Garcia-Parrilla MC, Troncoso AM. Isolation, identification, and antioxidant activity of anthocyanin compounds in Camarosa strawberry. Food Chem. 2010;123:574–82.

    Article  CAS  Google Scholar 

  25. Kim SK, Kim DS, Kim DY, Chun C. Variation of bioactive compounds content of 14 oriental strawberry cultivars. Food Chem. 2015;184:196–202.

    Article  CAS  PubMed  Google Scholar 

  26. Khalifa I, Zhu W, Li K-K, Li C-M. Polyphenols of mulberry fruits as multifaceted compounds: compositions, metabolism, health benefits, and stability—a structural review. J Funct Foods. 2018;40:28–43.

    Article  CAS  Google Scholar 

  27. Chen Y, Du F, Wang W, et al. Large-scale isolation of high-purity anthocyanin monomers from mulberry fruits by combined chromatographic techniques. J Sep Sci. 2017;40:3506–12.

    Article  CAS  PubMed  Google Scholar 

  28. Hogan S, Chung H, Zhang L, et al. Antiproliferative and antioxidant properties of anthocyanin-rich extract from açai. Food Chem. 2010;118:208–14.

    Article  CAS  Google Scholar 

  29. Pacheco-Palencia LA, Hawken P, Talcott ST. Phytochemical, antioxidant and pigment stability of açai (Euterpe oleracea Mart.) as affected by clarification, ascorbic acid fortification and storage. Food Res Int. 2007;40:620–8.

    Article  CAS  Google Scholar 

  30. Schauss AG, Wu X, Prior RL, et al. Antioxidant capacity and other bioactivities of the freeze-dried Amazonian palm berry, Euterpe oleracea mart. (acai). J Agric Food Chem. 2006;54:8604–10.

    Article  CAS  PubMed  Google Scholar 

  31. Osorio C, Hurtado N, Dawid C, Hofmann T, Heredia-Mira FJ, Morales AL. Chemical characterisation of anthocyanins in tamarillo (Solanum betaceum Cav.) and Andes berry (Rubus glaucus Benth.) fruits. Food Chem. 2012;132:1915–21.

    Article  CAS  Google Scholar 

  32. Fang Z, Zhang M, Sun Y, Sun J. Polyphenol oxidase from bayberry (Myrica rubra Sieb. et Zucc.) and its role in anthocyanin degradation. Food Chem. 2007;103:268–73.

    Article  CAS  Google Scholar 

  33. Zhou S-H, Fang Z-X, Lü Y, Chen J-C, Liu D-H, Ye X-Q. Phenolics and antioxidant properties of bayberry (Myrica rubra Sieb. et Zucc.) pomace. Food Chem. 2009;112:394–9.

    Article  CAS  Google Scholar 

  34. Rojo LE, Ribnicky D, Logendra S, et al. In vitro and in vivo anti-diabetic effects of anthocyanins from Maqui Berry (Aristotelia chilensis). Food Chem. 2012;131:387–96.

    Article  CAS  PubMed  Google Scholar 

  35. Fredes C, Yousef GG, Robert P, et al. Anthocyanin profiling of wild maqui berries (Aristotelia chilensis [Mol.] Stuntz) from different geographical regions in Chile. J Sci Food Agric. 2014;94:2639–48.

    Article  CAS  PubMed  Google Scholar 

  36. Escribano-Bailón MT, Alcalde-Eon C, Muñoz O, Rivas-Gonzalo JC, Santos-Buelga C. Anthocyanins in berries of maqui [Aristotelia chilensis (Mol.) Stuntz]. Phytochem Anal. 2006;17:8–14.

    Article  PubMed  Google Scholar 

  37. Gironés-Vilaplana A, Mena P, García-Viguera C, Moreno DA. A novel beverage rich in antioxidant phenolics: Maqui berry (Aristotelia chilensis) and lemon juice. LWT - Food Sci Technol. 2012;47:279–86.

    Article  Google Scholar 

  38. Bochi VC, Barcia MT, Rodrigues D, Speroni CS, Giusti MM, Godoy HT. Polyphenol extraction optimisation from Ceylon gooseberry (Dovyalis hebecarpa) pulp. Food Chem. 2014;164:347–54.

    Article  CAS  PubMed  Google Scholar 

  39. Bochi VC, Barcia MT, Rodrigues D, Godoy HT. Biochemical characterization of Dovyalis hebecarpa fruits: a source of anthocyanins with high antioxidant capacity. J Food Sci. 2015;80:C2127–33.

    Article  CAS  PubMed  Google Scholar 

  40. de Rosso VV, Mercadante AZ. HPLC–PDA–MS/MS of anthocyanins and carotenoids from dovyalis and tamarillo fruits. J Agric Food Chem. 2007;55:9135–41.

    Article  PubMed  Google Scholar 

  41. Pati S, Liberatore MT, Gambacorta G, Antonacci D, La Notte E. Rapid screening for anthocyanins and anthocyanin dimers in crude grape extracts by high performance liquid chromatography coupled with diode array detection and tandem mass spectrometry. J Chromatogr A. 2009;1216:3864–8.

    Article  CAS  PubMed  Google Scholar 

  42. Bars-Cortina D, Macià A, Iglesias I, Romero MP, Motilva MJ. Phytochemical profiles of new red-fleshed apple varieties compared with traditional and new white-fleshed varieties. J Agric Food Chem. 2017;65:1684–96.

    Article  CAS  PubMed  Google Scholar 

  43. Malec M, Le Quere J-M, Sotin H, Kolodziejczyk K, Bauduin R, Guyot S. Polyphenol profiling of a red-fleshed apple cultivar and evaluation of the color extractability and stability in the juice. J Agric Food Chem. 2014;62:6944–54.

    Article  CAS  PubMed  Google Scholar 

  44. Oszmiański J, Lachowicz S, Gławdel E, Cebulak T, Ochmian I. Determination of phytochemical composition and antioxidant capacity of 22 old apple cultivars grown in Poland. Eur Food Res Technol. 2018;244:647–62.

    Article  Google Scholar 

  45. Brahem M, Renard CMGC, Eder S, et al. Characterization and quantification of fruit phenolic compounds of European and Tunisian pear cultivars. Food Res Int. 2017;95:125–33.

    Article  CAS  PubMed  Google Scholar 

  46. ** H, Cheng Z, Yichao T. Determination of anthocyanin composition and content in fruits of different peach varieties by HPLC. Food Sci. 2013;34:208–11.

    Google Scholar 

  47. Osorio C, Acevedo B, Hillebrand S, Carriazo J, Winterhalter P, Morales ALA. Microencapsulation by spray-drying of anthocyanin pigments from corozo (Bactris guineensis) fruit. J Agric Food Chem. 2010;58:6977–85.

    Article  CAS  PubMed  Google Scholar 

  48. Osorio C, Carriazo JG, Almanza O. Antioxidant activity of corozo (Bactris guineensis) fruit by electron paramagnetic resonance (EPR) spectroscopy. Eur Food Res Technol. 2011;233:103–8.

    Article  CAS  Google Scholar 

  49. Wu X, Prior RL. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J Agric Food Chem. 2005;53:2589–99.

    Article  CAS  PubMed  Google Scholar 

  50. Arapitsas P, Sjöberg PJR, Turner C. Characterisation of anthocyanins in red cabbage using high resolution liquid chromatography coupled with photodiode array detection and electrospray ionization-linear ion trap mass spectrometry. Food Chem. 2008;109:219–26.

    Article  CAS  PubMed  Google Scholar 

  51. Lin L-Z, Sun J, Chen P, Harnly J. UHPLC-PDA-ESI/HRMS/MS n analysis of anthocyanins, flavonol glycosides, and hydroxycinnamic acid derivatives in red mustard greens (Brassica juncea Coss variety). J Agric Food Chem. 2011;59:12059–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. He Q, Zhang Z, Zhang L. Anthocyanin accumulation, antioxidant ability and stability, and a transcriptional analysis of anthocyanin biosynthesis in purple heading Chinese cabbage (Brassica rapa L. ssp. pekinensis). J Agric Food Chem. 2016;64:132–45.

    Article  CAS  PubMed  Google Scholar 

  53. Ahmadiani N, Robbins RJ, Collins TM, Giusti MM. Anthocyanins contents, profiles, and color characteristics of red cabbage extracts from different cultivars and maturity stages. J Agric Food Chem. 2014;62:7524–31.

    Article  CAS  PubMed  Google Scholar 

  54. Li H, Deng Z, Zhu H, et al. Highly pigmented vegetables: anthocyanin compositions and their role in antioxidant activities. Food Res Int. 2012;46:250–9.

    Article  CAS  Google Scholar 

  55. Montilla EC, Arzaba MR, Hillebrand S, Winterhalter P. Anthocyanin composition of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) cultivars Antonina, Beta Sweet, Deep Purple, and Purple Haze. J Agric Food Chem. 2011;59:3385–90.

    Article  CAS  PubMed  Google Scholar 

  56. Scalzo RL, Genna A, Branca F, Chedin M, Chassaigne H. Anthocyanin composition of cauliflower (Brassica oleracea L. var. botrytis) and cabbage (B. oleracea L. var. capitata) and its stability in relation to thermal treatments. Food Chem. 2008;107:136–44.

    Article  Google Scholar 

  57. Matsuzoe N, Yamaguchi M, Kawanobu S, Watanabe Y, Higashi H, Sakata Y. Effect of dark treatment of the eggplant on fruit skin color and its anthocyanin component. J Jpn Soc Hortic Sci. 1999;68:138–45.

    Article  CAS  Google Scholar 

  58. Noda Y, Kaneyuki T, Igarashi K, Mori A, Packer L. Antioxidant activity of nasunin, an anthocyanin in eggplant. Res Commun Mol Pathol Pharmacol. 1998;102:175–87.

    CAS  PubMed  Google Scholar 

  59. Sadilova E, Stintzing FC, Carle R. Anthocyanins, colour and antioxidant properties of eggplant (Solanum melongena L.) and violet pepper (Capsicum annuum L.) peel extracts. Z Naturforsch C. 2006;61:527–35.

    Article  CAS  PubMed  Google Scholar 

  60. Todaro A, Cimino F, Rapisarda P, Catalano AE, Barbagallo RN, Spagna G. Recovery of anthocyanins from eggplant peel. Food Chem. 2009;114:434–9.

    Article  CAS  Google Scholar 

  61. Mennella G, Lo Scalzo R, Fibiani M, et al. Chemical and bioactive quality traits during fruit ripening in eggplant (S. melongena L.) and allied species. J Agric Food Chem. 2012;60:11821–31.

    Article  CAS  PubMed  Google Scholar 

  62. Azuma K, Ohyama A, Ippoushi K, et al. Structures and antioxidant activity of anthocyanins in many accessions of eggplant and its related species. J Agric Food Chem. 2008;56:10154–9.

    Article  CAS  PubMed  Google Scholar 

  63. Xu B, Chang SKC. Phenolic substance characterization and chemical and cell-based antioxidant activities of 11 lentils grown in the Northern United States. J Agric Food Chem. 2010;58:1509–17.

    Article  CAS  PubMed  Google Scholar 

  64. Takeoka GR, Dao LT, Tamura H, Harden LA. Delphinidin 3-O-(2-O-β-D-glucopyranosyl-α-L-arabinopyranoside): a novel anthocyanin identified in beluga black lentils. J Agric Food Chem. 2005;53:4932–7.

    Article  CAS  PubMed  Google Scholar 

  65. Giusti F, Caprioli G, Ricciutelli M, Vittori S, Sagratini G. Determination of fourteen polyphenols in pulses by high performance liquid chromatography-diode array detection (HPLC-DAD) and correlation study with antioxidant activity and colour. Food Chem. 2017;221:689–97.

    Article  CAS  PubMed  Google Scholar 

  66. Arnnok P, Ruangviriyachai C, Mahachai R, Techawongstien S, Chanthai S. Determination of total phenolics and anthocyanin contents in the pericarp of hot chilli pepper (Capsicum annuum L.). Int Food Res J. 2012;19:235.

    CAS  Google Scholar 

  67. Ji X, Rivers L, Zielinski Z, et al. Quantitative analysis of phenolic components and glycoalkaloids from 20 potato clones and in vitro evaluation of antioxidant, cholesterol uptake, and neuroprotective activities. Food Chem. 2012;133:1177–87.

    Article  CAS  Google Scholar 

  68. Kim HW, Kim SR, Lee YM, Jang HH, Kim JB. Analysis of variation in anthocyanin composition in Korean coloured potato cultivars by LC-DAD-ESI-MS and PLS-DA. Potato Res. 2018;61:1–17.

    Article  CAS  Google Scholar 

  69. Donner H, Gao L, Mazza G. Separation and characterization of simple and malonylated anthocyanins in red onions, Allium cepa L. Food Res Int. 1997;30:637–43.

    Article  CAS  Google Scholar 

  70. Fossen T, Andersen ØM. Anthocyanins from red onion, Allium cepa, with novel aglycone. Phytochemistry. 2003;62:1217–20.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang S-L, Peng D, Xu Y-C, Lü S-W, Wang J-J. Quantification and analysis of anthocyanin and flavonoids compositions, and antioxidant activities in onions with three different colors. J Integr Agric. 2016;15:2175–81.

    Article  CAS  Google Scholar 

  72. Giusti MM, Ghanadan H, Wrolstad RE. Elucidation of the structure and conformation of red radish (Raphanus sativus) anthocyanins using one-and two-dimensional nuclear magnetic resonance techniques. J Agric Food Chem. 1998;46:4858–63.

    Article  CAS  Google Scholar 

  73. Otsuki T, Matsufuji H, Takeda M, Toyoda M, Goda Y. Acylated anthocyanins from red radish (Raphanus sativus L.). Phytochemistry. 2002;60:79–87.

    Article  CAS  PubMed  Google Scholar 

  74. Liu Y, Murakami N, Wang L, Zhang S. Preparative high-performance liquid chromatography for the purification of natural acylated anthocyanins from red radish (Raphanus sativus L.). J Chromatogr Sci. 2008;46:743–6.

    Article  CAS  PubMed  Google Scholar 

  75. Park NI, Xu H, Li X, et al. Anthocyanin accumulation and expression of anthocyanin biosynthetic genes in radish (Raphanus sativus). J Agric Food Chem. 2011;59:6034–9.

    Article  CAS  PubMed  Google Scholar 

  76. Koponen JM, Happonen AM, Mattila PH, Törrönen AR. Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. J Agric Food Chem. 2007;55:1612–9.

    Article  CAS  PubMed  Google Scholar 

  77. Lee L-S, Chang E-J, Rhim J-W, Ko B-S, Park S-W. Isolation and identification of anthocyanins from purple sweet potatoes. Prevent Nutr Food Sci. 1997;2:83–8.

    CAS  Google Scholar 

  78. Truong V-D, Deighton N, Thompson RT, et al. Characterization of anthocyanins and anthocyanidins in purple-fleshed sweet potatoes by HPLC-DAD/ESI-MS/MS. J Agric Food Chem. 2010;58:404–10.

    Article  CAS  PubMed  Google Scholar 

  79. Montilla EC, Hillebrand S, Butschbach D, Baldermann S, Watanabe N, Winterhalter P. Preparative isolation of anthocyanins from Japanese purple sweet potato (Ipomoea batatas L.) varieties by high-speed countercurrent chromatography. J Agric Food Chem. 2010;58:9899–904.

    Article  CAS  PubMed  Google Scholar 

  80. Lee MJ, Park JS, Choi DS, Jung MY. Characterization and quantitation of anthocyanins in purple-fleshed sweet potatoes cultivated in Korea by HPLC-DAD and HPLC-ESI-QTOF-MS/MS. J Agric Food Chem. 2013;61:3148–58.

    Article  CAS  PubMed  Google Scholar 

  81. He W, Zeng M, Chen J, et al. Identification and quantitation of anthocyanins in purple-fleshed sweet potatoes cultivated in China by UPLC-PDA and UPLC-QTOF-MS/MS. J Agric Food Chem. 2016;64:171–7.

    Article  CAS  PubMed  Google Scholar 

  82. Iijima Y, Yoshiara M, Morimitsu Y, Kubota K. Anthocyanin compounds in Japanese ginger (Zingiber officinale Roscoe) and their quantitative characteristics. Food Sci Technol Res. 2003;9:292–6.

    Article  CAS  Google Scholar 

  83. McDougall GJ, Dobson P, Jordan-Mahy N. Effect of different cooking regimes on rhubarb polyphenols. Food Chem. 2010;119:758–64.

    Article  CAS  Google Scholar 

  84. Takeoka GR, Dao L, Harden L, Pantoja A, Kuhl JC. Antioxidant activity, phenolic and anthocyanin contents of various rhubarb (Rheum spp.) varieties. Int J Food Sci Technol. 2013;48:172–8.

    Article  CAS  Google Scholar 

  85. Terahara N, Honda T, Hayashi M, Ishimaru K. New anthocyanins from purple pods of pea (Pisum spp.). Biosci Biotechnol Biochem. 2000;64:2569–74.

    Article  CAS  PubMed  Google Scholar 

  86. Su J-D, Wang M-Y, Yu C-H, Tsai T-C. Structure determination of major anthocyanin in purple black peanut seed coat. Taiwan Agric Chem Food Sci. 2009;47:126–32.

    CAS  Google Scholar 

  87. Kuang Q, Yu Y, Attree R, Xu B. A comparative study on anthocyanin, saponin, and oil profiles of black and red seed coat peanut (Arachis hypogacea) grown in China. Int J Food Prop. 2017;20:S131–40.

    Article  CAS  Google Scholar 

  88. Zhao Z, Wu M, Zhan Y, et al. Characterization and purification of anthocyanins from black peanut (Arachis hypogaea L.) skin by combined column chromatography. J Chromatogr A. 2017;1519:74–82.

    Article  CAS  PubMed  Google Scholar 

  89. Takeoka GR, Dao LT, Full GH, et al. Characterization of black bean (Phaseolus vulgaris L.) anthocyanins. J Agric Food Chem. 1997;45:3395–400.

    Article  CAS  Google Scholar 

  90. Choung M-G. Structural analysis of black common bean (Phaseolus vulgaris L.) anthocyanins. Food Sci Biotechnol. 2005;14:672–5.

    CAS  Google Scholar 

  91. Lin L-Z, Harnly JM, Pastor-Corrales MS, Luthria DL. The polyphenolic profiles of common bean (Phaseolus vulgaris L.). Food Chem. 2008;107:399–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Choung M-G, Choi B-R, An Y-N, Chu Y-H, Cho Y-S. Anthocyanin profile of Korean cultivated kidney bean (Phaseolus vulgaris L.). J Agric Food Chem. 2003;51:7040–3.

    Article  CAS  PubMed  Google Scholar 

  93. Choung M-G, Baek I-Y, Kang S-T, et al. Isolation and determination of anthocyanins in seed coats of black soybean (Glycine max (L.) Merr.). J Agric Food Chem. 2001;49:5848–51.

    Article  CAS  PubMed  Google Scholar 

  94. Hema A, Palé E, Duez P, Luhmer M, Nacro M. Activités anti-radicalaires de trois anthocyanines monoglucosides isolées des graines de Glycine max. J Soc Ouest Afr Chim. 2007;23:61.

    Google Scholar 

  95. Koh K, Youn JE, Kim H-S. Identification of anthocyanins in black soybean (Glycine max (L.) Merr.) varieties. J Food Sci Technol. 2014;51:377–81.

    Article  CAS  PubMed  Google Scholar 

  96. Yang C, Hu B, Iqbal N, et al. Effect of shading on accumulation of soybean isoflavonoid under maize-soybean strip intercrop** systems. Plant Prod Sci. 2018;21:193–202.

    CAS  Google Scholar 

  97. Lee JH, Kang NS, Shin S-O, et al. Characterisation of anthocyanins in the black soybean (Glycine max L.) by HPLC-DAD-ESI/MS analysis. Food Chem. 2009;112:226–31.

    Article  CAS  Google Scholar 

  98. Zhang RF, Zhang FX, Zhang MW, et al. Phenolic composition and antioxidant activity in seed coats of 60 Chinese black soybean (Glycine max L. Merr.) varieties. J Agric Food Chem. 2011;59:5935–44.

    Article  CAS  PubMed  Google Scholar 

  99. Kim M-J, Hyun J-N, Kim J-A, et al. Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J Agric Food Chem. 2007;55:4802–9.

    Article  CAS  PubMed  Google Scholar 

  100. Zhu F. Anthocyanins in cereals: composition and health effects. Food Res Int. 2018;109:232–49.

    Article  CAS  PubMed  Google Scholar 

  101. Lao F, Giusti MM. Quantification of purple corn (Zea mays L.) anthocyanins using spectrophotometric and HPLC approaches: method comparison and correlation. Food Anal Methods. 2016;9:1367–80.

    Article  Google Scholar 

  102. Paulsmeyer M, Chatham L, Becker T, West M, West L, Juvik J. Survey of anthocyanin composition and concentration in diverse maize germplasms. J Agric Food Chem. 2017;65:4341–50.

    Article  CAS  PubMed  Google Scholar 

  103. Collison A, Yang L, Dykes L, Murray S, Awika JM. Influence of genetic background on anthocyanin and copigment composition and behavior during thermoalkaline processing of maize. J Agric Food Chem. 2015;63:5528–38.

    Article  CAS  PubMed  Google Scholar 

  104. Salinas Moreno Y, Sánchez GS, Hernández DR, Lobato NR. Characterization of anthocyanin extracts from maize kernels. J Chromatogr Sci. 2005;43:483–7.

    Article  Google Scholar 

  105. Pedreschi R, Cisneros-Zevallos L. Phenolic profiles of Andean purple corn (Zea mays L.). Food Chem. 2007;100:956–63.

    Article  CAS  Google Scholar 

  106. Zhao X, Corrales M, Zhang C, Hu X, Ma Y, Tauscher B. Composition and thermal stability of anthocyanins from Chinese purple corn (Zea mays L.). J Agric Food Chem. 2008;56:10761–6.

    Article  CAS  PubMed  Google Scholar 

  107. Nankar AN, Dungan B, Paz N, et al. Quantitative and qualitative evaluation of kernel anthocyanins from southwestern United States blue corn. J Sci Food Agric. 2016;96:4542–52.

    Article  CAS  PubMed  Google Scholar 

  108. Harakotr B, Suriharn B, Tangwongchai R, Scott MP, Lertrat K. Anthocyanins and antioxidant activity in coloured waxy corn at different maturation stages. J Funct Foods. 2014;9:109–18.

    Article  CAS  Google Scholar 

  109. Zhu Q, Yu S, Zeng D, et al. Development of “purple endosperm rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol Plant. 2017;10:918–29.

    Article  CAS  PubMed  Google Scholar 

  110. Yawadio R, Tanimori S, Morita N. Identification of phenolic compounds isolated from pigmented rices and their aldose reductase inhibitory activities. Food Chem. 2007;101:1616–25.

    Article  CAS  Google Scholar 

  111. Hiemori M, Koh E, Mitchell AE. Influence of cooking on anthocyanins in black rice (Oryza sativa L. japonica var. SBR). J Agric Food Chem. 2009;57:1908–14.

    Article  CAS  PubMed  Google Scholar 

  112. Hou Z, Qin P, Zhang Y, Cui S, Ren G. Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics. Food Res Int. 2013;50:691–7.

    Article  CAS  Google Scholar 

  113. Pereira-Caro G, Cros G, Yokota T, Crozier A. Phytochemical profiles of black, red, brown, and white rice from the Camargue region of France. J Agric Food Chem. 2013;61:7976–86.

    Article  CAS  PubMed  Google Scholar 

  114. Hao J, Zhu H, Zhang Z, Yang S, Li H. Identification of anthocyanins in black rice (Oryza sativa L.) by UPLC/Q-TOF-MS and their in vitro and in vivo antioxidant activities. J Cereal Sci. 2015;64:92–9.

    Article  CAS  Google Scholar 

  115. Chen XQ, Nagao N, Itani T, Irifune K. Anti-oxidative analysis, and identification and quantification of anthocyanin pigments in different coloured rice. Food Chem. 2012;135:2783–8.

    Article  CAS  PubMed  Google Scholar 

  116. Shao Y, Xu F, Sun X, Bao J, Beta T. Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryo and endosperm of white, red and black rice kernels (Oryza sativa L.). J Cereal Sci. 2014;59:211–8.

    Article  CAS  Google Scholar 

  117. Rhodes DH, Hoffmann L Jr, Rooney WL, Ramu P, Morris GP, Kresovich S. Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) Moench] germplasm. J Agric Food Chem. 2014;62:10916–27.

    Article  CAS  PubMed  Google Scholar 

  118. Awika JM, Rooney LW, Waniska RD. Properties of 3-deoxyanthocyanins from sorghum. J Agric Food Chem. 2004;52:4388–94.

    Article  CAS  PubMed  Google Scholar 

  119. Awika JM, Rooney LW, Waniska RD. Anthocyanins from black sorghum and their antioxidant properties. Food Chem. 2005;90:293–301.

    Article  CAS  Google Scholar 

  120. Carbonneau M-A, Cisse M, Mora-Soumille N, et al. Antioxidant properties of 3-deoxyanthocyanidins and polyphenolic extracts from Côte d’Ivoire’s red and white sorghums assessed by ORAC and in vitro LDL oxidisability tests. Food Chem. 2014;145:701–9.

    Article  CAS  PubMed  Google Scholar 

  121. Dykes L, Seitz LM, Rooney WL, Rooney LW. Flavonoid composition of red sorghum genotypes. Food Chem. 2009;116:313–7.

    Article  CAS  Google Scholar 

  122. Geera B, Ojwang LO, Awika JM. New highly stable dimeric 3-deoxyanthocyanidin pigments from Sorghum bicolor leaf sheath. J Food Sci. 2012;77:C566–72.

    Article  CAS  PubMed  Google Scholar 

  123. Kayodé APP, Bara CA, Dalodé-Vieira G, Linnemann AR, Nout MJR. Extraction of antioxidant pigments from dye sorghum leaf sheaths. LWT - Food Sci Technol. 2012;46:49–55.

    Article  Google Scholar 

  124. Petti C, Kushwaha R, Tateno M, et al. Mutagenesis breeding for increased 3-deoxyanthocyanidin accumulation in leaves of Sorghum bicolor (L.) Moench: a source of natural food pigment. J Agric Food Chem. 2014;62:1227–32.

    Article  CAS  PubMed  Google Scholar 

  125. Ficco DBM, De Simone V, Colecchia SA, et al. Genetic variability in anthocyanin composition and nutritional properties of blue, purple, and red bread (Triticum aestivum L.) and durum (Triticum turgidum L. ssp. turgidum convar. durum) wheats. J Agric Food Chem. 2014;62:8686–95.

    Article  CAS  PubMed  Google Scholar 

  126. Abdel-Aal ESM, Hucl P, Shipp J, Rabalski I. Compositional differences in anthocyanins from blue-and purple-grained spring wheat grown in four Environments in Central Saskatchewan. Cereal Chem. 2016;93:32–8.

    Article  CAS  Google Scholar 

  127. Hosseinian FS, Li W, Beta T. Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chem. 2008;109:916–24.

    Article  CAS  PubMed  Google Scholar 

  128. Hu C, Cai Y-Z, Li W, Corke H, Kitts DD. Anthocyanin characterization and bioactivity assessment of a dark blue grained wheat (Triticum aestivum L. cv. Hedong Wumai) extract. Food Chem. 2007;104:955–61.

    Article  CAS  Google Scholar 

  129. Zhu F. Structure, physicochemical properties, and uses of millet starch. Food Res Int. 2014;64:200–11.

    Article  CAS  PubMed  Google Scholar 

  130. Dedio W, Hill RD, Evans LE. Anthocyanins in the pericarp and coleoptiles of purple wheat. Can J Plant Sci. 1972;52:977–80.

    Article  CAS  Google Scholar 

  131. Pihlava J-M, Hellström J, Kurtelius T, Mattila P. Flavonoids, anthocyanins, phenolamides, benzoxazinoids, lignans and alkylresorcinols in rye (Secale cereale) and some rye products. J Cereal Sci. 2018;79:183–92.

    Article  CAS  Google Scholar 

  132. Pahuja M, Mehla J, Reeta KH, Joshi S, Gupta YK. Hydroalcoholic extract of Zizyphus jujuba ameliorates seizures, oxidative stress, and cognitive impairment in experimental models of epilepsy in rats. Epilepsy Behav. 2011;21:356–63.

    Article  PubMed  Google Scholar 

  133. Plastina P, Bonofiglio D, Vizza D, et al. Identification of bioactive constituents of Ziziphus jujube fruit extracts exerting antiproliferative and apoptotic effects in human breast cancer cells. J Ethnopharmacol. 2012;140:325–32.

    Article  CAS  PubMed  Google Scholar 

  134. Yeung W-F, Chung K-F, Poon MM-K, et al. Chinese herbal medicine for insomnia: a systematic review of randomized controlled trials. Sleep Med Rev. 2012;16:497–507.

    Article  PubMed  Google Scholar 

  135. Shi Q, Zhang Z, Su J, Zhou J, Li X. Comparative analysis of pigments, phenolics, and antioxidant activity of Chinese Jujube (Ziziphus jujuba Mill.) during fruit development. Molecules. 2018;23:1917.

    Article  PubMed Central  Google Scholar 

  136. Zhang H, Jiang L, Ye S, Ye Y, Ren F. Systematic evaluation of antioxidant capacities of the ethanolic extract of different tissues of jujube (Ziziphus jujuba Mill.) from China. Food Chem Toxicol. 2010;48:1461–5.

    Article  CAS  PubMed  Google Scholar 

  137. Najafabadi NS, Sahari MA, Barzegar M, Esfahani ZH. Effects of concentration method and storage time on some bioactive compounds and color of jujube (Ziziphus jujuba var vulgaris) concentrate. J Food Sci Technol. 2017;54:2947–55.

    Article  Google Scholar 

  138. Rossetto M, Lante A, Vanzani P, Spettoli P, Scarpa M, Rigo A. Red chicories as potent scavengers of highly reactive radicals: a study on their phenolic composition and peroxyl radical trap** capacity and efficiency. J Agric Food Chem. 2005;53:8169–75.

    Article  CAS  PubMed  Google Scholar 

  139. Innocenti M, Gallori S, Giaccherini C, Ieri F, Vincieri FF, Mulinacci N. Evaluation of the phenolic content in the aerial parts of different varieties of Cichorium intybus L. J Agric Food Chem. 2005;53:6497–502.

    Article  CAS  PubMed  Google Scholar 

  140. Carazzone C, Mascherpa D, Gazzani G, Papetti A. Identification of phenolic constituents in red chicory salads (Cichorium intybus) by high-performance liquid chromatography with diode array detection and electrospray ionisation tandem mass spectrometry. Food Chem. 2013;138:1062–71.

    Article  CAS  PubMed  Google Scholar 

  141. Sabir SM, Maqsood H, Ahmed SD, Shah AH, Khan MQ. Chemical and nutritional constituents of sea buckthorn (Hippophae rhamnoides ssp. Turkestanica) berries from Pakistan. Italian J Food Sci. 2005;17:455.

    CAS  Google Scholar 

  142. Liu P, Yang B, Kallio H. Characterization of phenolic compounds in Chinese hawthorn (Crataegus pinnatifida Bge. var. major) fruit by high performance liquid chromatography–electrospray ionization mass spectrometry. Food Chem. 2010;121:1188–97.

    Article  CAS  Google Scholar 

  143. Veberic R, Slatnar A, Bizjak J, Stampar F, Mikulic-Petkovsek M. Anthocyanin composition of different wild and cultivated berry species. LWT - Food Sci Technol. 2015;60:509–17.

    Article  CAS  Google Scholar 

  144. Liu S, Chang X, Liu X, Shen Z. Effects of pretreatments on anthocyanin composition, phenolics contents and antioxidant capacities during fermentation of hawthorn (Crataegus pinnatifida) drink. Food Chem. 2016;212:87–95.

    Article  CAS  PubMed  Google Scholar 

  145. Slimestad R, Andersen ØM. Cyanidin 3-(2-glucosylgalactoside) and other anthocyanins from fruits of Cornus suecica. Phytochemistry. 1998;49:2163–6.

    Article  CAS  Google Scholar 

  146. Seeram NP, Schutzki R, Chandra A, Nair MG. Characterization, quantification, and bioactivities of anthocyanins in Cornus species. J Agric Food Chem. 2002;50:2519–23.

    Article  CAS  PubMed  Google Scholar 

  147. Kang NS, Lee JH. Characterisation of phenolic phytochemicals and quality changes related to the harvest times from the leaves of Korean purple perilla (Perilla frutescens). Food Chem. 2011;124:556–62.

    Article  CAS  Google Scholar 

  148. Kim SH, Joo MH, Yoo SH. Structural identification and antioxidant properties of major anthocyanin extracted from Omija (Schizandra chinensis) fruit. J Food Sci. 2009;74:C134–40.

    Article  CAS  PubMed  Google Scholar 

  149. Liao J, Zang J, Yuan F, et al. Identification and analysis of anthocyanin components in fruit color variation in Schisandra chinensis. J Sci Food Agric. 2016;96:3213–9.

    Article  CAS  PubMed  Google Scholar 

  150. De Brito ES, De Araújo MCP, Alves RE, Carkeet C, Clevidence BA, Novotny JA. Anthocyanins present in selected tropical fruits: acerola, jambolão, jussara, and guajiru. J Agric Food Chem. 2007;55:9389–94.

    Article  PubMed  Google Scholar 

  151. do Carmo Brito BN, da Silva Pena R, Santos Lopes A, Campos Chisté R. Anthocyanins of Jambolão (Syzygium cumini): extraction and pH-dependent color changes. J Food Sci. 2017;82:2286–90.

    Article  PubMed  Google Scholar 

  152. Katori M, Watanabe K, Nomura K, Yoneda K. Cultivar differences in anthocyanin and carotenoid pigments in the petals of the flowering lotus (Nelumbo spp.). J Jpn Soc Hortic Sci. 2002;71:812–7.

    Article  CAS  Google Scholar 

  153. Deng J, Chen S, Yin X, et al. Systematic qualitative and quantitative assessment of anthocyanins, flavones and flavonols in the petals of 108 lotus (Nelumbo nucifera) cultivars. Food Chem. 2013;139:307–12.

    Article  CAS  PubMed  Google Scholar 

  154. Chen S, **ang Y, Deng J, Liu Y, Li S. Simultaneous analysis of anthocyanin and non-anthocyanin flavonoid in various tissues of different lotus (Nelumbo) cultivars by HPLC-DAD-ESI-MSn. PLoS One. 2013;8:e62291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Al-Farsi M, Alasalvar C, Morris A, Baron M, Shahidi F. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J Agric Food Chem. 2005;53:7592–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, B., Wang, L., Bai, W., Chen, W., Chen, F., Shu, C. (2021). Dietary Sources of Anthocyanins. In: Anthocyanins. Springer, Singapore. https://doi.org/10.1007/978-981-16-7055-8_2

Download citation

Publish with us

Policies and ethics

Navigation