Utilization and Management of Agricultural Wastes for Bioenergy Production, Weed Control, and Soil Improvement Through Microbial and Technical Processes

  • Chapter
  • First Online:
Environmental Microbiology and Biotechnology
  • 599 Accesses

Abstract

The utilization and management of agricultural wastes for plant growth and fertilization or crop production and protection purposes can facilitate the transition of current agricultural systems or “productivism agriculture” to a post-productivism agriculture or “production of nature” era. The availability of agricultural wastes, a theoretical estimation indicates that approximately 3.5–17.0 billion tons of agricultural wastes can be produced worldwide, in combination with the various technologies for the conversion of these wastes to bioenergy are significant factors that enhance the value of this type of feedstock. In addition, the role of agricultural wastes as mean for weed control (e.g. maize gluten meal, Brassicaceae seed meal, abrasive grit), soil amendments and fertilizer substitute (e.g. abrasive grit, biochar, Brassicaceae oilseed meal, digestate from anaerobic digestion), or plant growing medium (e.g. composts) signifies the added value of these materials toward sustainable production systems. Nevertheless, the utilization of agricultural wastes should not disturb the soil carbon and other nutrients dynamics. This can be avoided by setting appropriate limits and continued monitoring, hence, reducing uncertainty about their beneficial environmental performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abedi J, Yeboah YD, Realff M, McGee D, Howard J, Bota KB (2001) An integrated approach to hydrogen production from agricultural residues for use in urban transportation. In: Proceedings of the 2001 DOE Hydrogen Program review. NREL/CP-570-30535

    Google Scholar 

  • Abel S, Peters A, Trinks S, Schonsky H, Facklam M, Wessolek G (2013) Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202:183–191

    Article  Google Scholar 

  • Abou Chehade L, Al Chami Z, De Pascali SA, Cavoski I, Fanizzi FP (2018) Biostimulants from food processing by-products: agronomic, quality and metabolic impacts on organic tomato (Solanum lycopersicum L.). J Sci Food Agric 98:1426–1436

    Article  CAS  PubMed  Google Scholar 

  • Aciou C, Cobirzan N (2013) Use of agricultural products and waste in the building materials industry. ProEnvironment 6:472–478

    Google Scholar 

  • Agegnehu G, Bass AM, Nelson PN, Bird MI (2016) Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci Total Environ 543:295–306

    Article  CAS  PubMed  Google Scholar 

  • Ahmad I, Basra SMA, Akram M, Wasaya A, Ansar M, Hussain S, Iqbal A, Hussain SA (2017) Improvement of antioxidant activities and yield of spring maize through seed priming and foliar application of plant growth regulators under heat stress conditions. Sem Cienc Agrar 38:47–56

    Article  Google Scholar 

  • Akubo K, Nahil MA, Williams PT (2018) Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas. J Energy Instit. https://doi.org/10.1016/j.joei.2018.10.013

  • Al Seadi T, Rutz D, Prassl H, Kottner M, Finsterwalder T, Volk S, Janssen R (2008) The biogas handbook. University of Southern Denmark, Esbjerg

    Google Scholar 

  • Amos D (2017) Aerated compost tea (ACT) to improve soil biology and to act as a biofertiliser/biofungicide, pp 1–2. http://orgprints.org/31042/. Accessed June, 2019

  • Andersson-Gunneras S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho PM, Nilsson P, Henrissat B, Moritz T, Sundberg B (2006) Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J 45:144–165

    Article  PubMed  CAS  Google Scholar 

  • Anonymous (1976) Abrasive blasting operations. Engineering control and work practices manual. Final report, Contract No. 210-75-0029, U.S Department of Health, Education, and Welfare, Public Health Service, Center for Disease Control, National Institute for Occupational Safety and Health, p 153

    Google Scholar 

  • Anonymous (2006) Agricultural waste-Opportunities for farmers and growers. Changing Practice series. Waste management-The duty of care. A Code of Practice. Environment Agency, reference GEHO0406BLNF-E-E. http://adlib.everysite.co.uk/resources/000/224/998/farm_waste_collect_diversification.pdf. Accessed January 2020

  • Anonymous (2016) Global biomass potential towards 2035. WBA factsheet. https://worldbioenergy.org/uploads/Factsheet_Biomass%20potential.pdf. Accessed January 2020

  • Aranda V, Calero J, Plaza I, Ontiveros-Orteg A (2016) Long-term effects of olive mill pomace co-compost on wettability and soil quality in olive groves. Geoderma 267:185–195

    Article  CAS  Google Scholar 

  • Atchison JE (1997) Data on non-wood plant fibers. In: Kocurek MJ, Stevens CFB (eds) Pulp and paper manufacture. vol. 1. Properties of fibrous raw materials and their preparation for pul**. CPPA, Montreal, pp 157–169

    Google Scholar 

  • Balat M (2008) Potential importance of hydrogen as a future solution to environmental and transportation problems. Int J Hydrog Energy 33:4013–4029

    Article  CAS  Google Scholar 

  • Balat H, Kırtay E (2010) Hydrogen from biomass. Present scenario and future prospects. Int J Hydrog Energy 35:7416–7426

    Article  CAS  Google Scholar 

  • Balat M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573

    Article  CAS  Google Scholar 

  • Bernet N, Beline F (2009) Challenges and innovations on biological treatment of livestock effluents. Bioresour Technol 100:5431–5436

    Article  CAS  PubMed  Google Scholar 

  • Bogdanski A, Dubois O, Jamieson C, Krell R (2010) Making integrated food- energy systems work for people and climate: an overview. Environment and natural resources management paper 45, environment climate change [bioenergy] monitoring and assessment, food and agriculture organization of the United Nations, Rome 2010

    Google Scholar 

  • Bone K, Mills S (2013) Principle of herbal pharmacology. In: Bone K, Mills S (eds) Principles and practice of phytotherapy, 2nd edn. Elsevier, Toronto, pp 17–82

    Google Scholar 

  • Boysan F, Ozer C, Bakkaloglu K, Borekci MT (2015) Biogas production from animal manure. Proc Earth Planetary Sci 15:908–911

    Article  Google Scholar 

  • Brinton W, Storms P, Evans E, Hill J (2004) Compost teas: microbial hygiene and quality in relation to method of preparation. Biodynamics 2:36–45

    Google Scholar 

  • Buitron G, Carrillo-Reyes J, Morales M, Faraloni C, Torzillo G (2017) Biohydrogen production from microalgae. In: Gonzalez-Fernandez C, Munoz R (eds) Microalgae-based biofuels and bioproducts. From feedstock cultivation to end-products, Woodhead Publishing series in energy. Elsevier, Cambridge, pp 209–234

    Chapter  Google Scholar 

  • Chachalis D, Korres NE, Khah EM (2008) Factors affecting seed germination and emergence of Venice mallow (Hibiscus trionum). Weed Sci 56:509–515

    Article  CAS  Google Scholar 

  • Chae KJ, Jang A, Yim SK, Kim IS (2008) The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour Technol 99:1–6

    Article  CAS  PubMed  Google Scholar 

  • Chalker-Scott L (2015) The Myth of weed-killing gluten: “Corn meal gluten is an effective organic herbicide”. Puyallup Research and Extension Center, Washington State University, https://s3.wp.wsu.edu/uploads/sites/403/2015/03/corn-gluten.pdf. Accessed January 2020

  • Champers BJ, Taylor M (2013) The use of digestate as a substitute for manufactured fertilizer. In: Korres NE, O’Kiely P, Benzie JAH, West JS (eds) Bioenergy production by anaerobic digestion. Using agricultural biomass and organic waste. Taylor and Francis Publishing Group, New York, pp 359–375

    Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    Article  CAS  PubMed  Google Scholar 

  • Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S (2009) Energy-and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recycl 53:434–447

    Article  Google Scholar 

  • Chong ML, Sabaratnamb V, Shiraic Y, Hassan MA (2009) Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrog Energy 34:3277–3287

    Article  CAS  Google Scholar 

  • Christofoletti CA, Escher JP, Correia JE, Marinho JFU, Fontanetti CS (2013) Sugarcane vinasse: environmental implications of its use. Waste Manag 33:2752–2761

    Article  CAS  PubMed  Google Scholar 

  • Cooper PA, Balatinecz JJ, Flannery SJ (1999) Agricultural waste materials for composites: A Canadian reality. In: Proceedings of Global Panel Based Conference, Centre for Management Technology, Nikko Hotel, Kuala Lumpur, 18–19 October

    Google Scholar 

  • Demirbas A (2005) Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sources 27:327–337

    Article  CAS  Google Scholar 

  • Demirbas A, Ozturk T (2005) Anaerobic digestion of agricultural solid residues. Inter J Green Energy 1:483–494

    Article  CAS  Google Scholar 

  • De Vos M, Kriksunov KL, Jander G (2008) Indole-3-acetonitrile production from indole glucosinolates deters oviposition by Pieris rapae. Plant Physiol 146:916–926

    Google Scholar 

  • Di Nicola G, Santecchia E, Santori G, Polonara F (2011) Advances in the development of bioethanol: a review. In: Aurelio M, Bernardes DS (eds) Biofuel’s engineering process technology. InTech, Rijeka

    Google Scholar 

  • Diaz LF (2007) Introduction. In: Diaz LF, de Bertoldi M, Bidlingmaier W, Stentiford E (eds) Compost science and technology, Waste management series 8. Elsevier, Amsterdam, pp 1–4

    Google Scholar 

  • Dick WA, Gregorich EG (2004) Develo** and maintaining soil organic matter levels. In: Schjonning P, Elmholt S, Christensen BT (eds) Managing soil quality challenges in modern agriculture. CABI Publishing, Wallingford, pp 103–120

    Chapter  Google Scholar 

  • Diver S (2002) Notes on compost teas: a supplement to the ATTRA publication: compost teas for plant disease control. Appropriate technology transfer for rural areas (ATTRA), National Sustainable Agriculture Information Service, Montana

    Google Scholar 

  • Dong L, Zhenhong Y, Yongming S, **aoying K, Yu Z (2009) Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. Int J Hydrog Energy 34:812–820

    Article  CAS  Google Scholar 

  • El-Naggar AH, Usman ARA, Al-Omran A, Ok YS, Ahmad M, Al-Wabel MI (2015) Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar. Chemosphere 138:67–73

    Article  CAS  PubMed  Google Scholar 

  • EPA (2017) EPA’s report on the environment (ROE). www.epa.gov/report-environment. Accessed July 2020

  • EUBIA (2012) EC policy-overview of new directives. Eur Biomass Ind Assoc Newsletter 12/12. www.eubia.org. Accessed January 2020

  • Eze JI, Ojike O (2012) Anaerobic production of biogas from maize wastes. Int J Phys Sci 7:982–987

    CAS  Google Scholar 

  • Fang HHP, Liu H, Zhang T (2005) Phototrophic hydrogen production from acetate and butyrate in wastewater. Int J Hydrog Energy 30:785–793

    Article  CAS  Google Scholar 

  • FAO (Food and Agriculture Organization) (2008) The state of food and agriculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Ferchichi M, Crabbe E, Hintz W, Gil GH, Almadidy A (2005) Influence of culture parameters on biological hydrogen production by Clostridium saccharoperbutylacetonicum ATCC 27021. World J Microbiol Biotechnol 21:855–862

    Article  CAS  Google Scholar 

  • Forcella F (2009) Potential use of abrasive air-propelled agricultural residues for weed control. Weed Res 49:341–345

    Article  Google Scholar 

  • Forcella F (2012) Air-propelled abrasive grit for postemergence in-row weed control in field corn. Weed Technol 26:161–164

    Article  Google Scholar 

  • Gerin PA, Vliegen F, Jossart JM (2008) Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresour Technol 99:2620–2627

    Article  CAS  PubMed  Google Scholar 

  • Gimsing AL, Kirkegaard JA (2009) Glucosinolates and biofumigation: fate of glucosinolates and their hydrolysis products in soil. Phytochem Rev 8:299–310

    Article  CAS  Google Scholar 

  • Gough RE, Carlstrom R (1999) Wheat gluten meal inhibits germination and growth of broadleaf and grassy weeds. Hortic Sci 34:269–270

    Google Scholar 

  • Hai HT, Tuyet NTA (2010) Benefits of the 3R approach for agricultural waste management (AWM) in Vietnam. Under the framework of joint project on Asia Resource Circulation Policy Research Working Paper Series. Institute for Global Environmental Strategies supported by the Ministry of Environment, Japan

    Google Scholar 

  • Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy 27:1185–1193

    Article  CAS  Google Scholar 

  • Handiseni M, Brown J, Zemetra R, Mazzola M (2011) Herbicidal activity of Brassicaceae seed meal on wild oat (Avena fatua), Italian ryegrass (Lolium multiflorum), redroot pigweed (Amaranthus retroflexus), and prickly lettuce (Lactuca serriola). Weed Technol 25:127–134

    Article  CAS  Google Scholar 

  • Hansson D, Morra MJ, Borek V, Snyder AJ, Johnson-Maynard JL, Thill DC (2008) Ionic thiocyanate (SCN-) production, fate, and phytotoxicity in soil amended with Brassicaceae seed meals. J Agric Food Chem 56:3912–3917

    Article  CAS  PubMed  Google Scholar 

  • He D, Bultel Y, Magnin JP, Roux C, Willison JC (2005) Hydrogen photosynthesis by Rhodobacter capsulatus and its coupling to PEM fuel cell. J Power Sources 141:19–23

    Article  CAS  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  CAS  PubMed  Google Scholar 

  • Hoagland L, Carpenter-Boggs L, Reganold J, Mazzola M (2008) Role of native soil biology in Brassicaceae seed meal induced weed suppression. Soil Biol Biochem 40:1689–1697

    Article  CAS  Google Scholar 

  • Hollister EB, Hu P, Wang AS, Hons FM, Gentry TJ (2014) Differential impacts of brassicaceous and nonbrassicaceous oilseed meals on soil bacterial and fungal communities. FEMS Microbiol Ecol 83:632–641

    Google Scholar 

  • Holm-Nielsen JB, Al Seadi T (2004) Manure based biogas systems. In: Lens P, Hamelers B, Hoitink H, Bidlingmaier W (eds) Resource recovery and reuse in organic solid waste management. IWA Publishing, London, pp 377–394

    Google Scholar 

  • Holm-Nielsen JB, Oleskowicz-Popiel P (2008) The future of biogas in Europe: visions and targets until 2020. In Biogas: a promising renewable energy source for Europe. AEBIOM Workshop: European Parliament Brussels

    Google Scholar 

  • Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484

    Article  CAS  PubMed  Google Scholar 

  • Jeffery S, Abalos D, Prodana M, Bastos AC, van Groenigen JW, Hungate B, Verheijen F (2017) Biochar boosts tropical but not temperate crop yields. Environ Res Lett 12:53001

    Article  CAS  Google Scholar 

  • Jorgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1:119–134

    Article  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzym Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  • Karagiannidis A, Perkoulidis G (2009) A multicriteria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes. Bioresour Technol 100:2355–2360

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L (2011) The anaerobic digestion of solid organic waste. Waste Manag 31:1737–1744

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Tucker MP, Nguyen QA (2002) Effects of pressing lignocellulosic biomass on sugar yield in two-stage dilute-acid hydrolysis process. Biotechnol Prog 18:489–494

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Shim CK, Kim YK, Hong SJ, Park JH, Han EJ, Kim JH, Kim SC (2015) Effect of aerated compost tea on the growth promotion of lettuce, soybean, and sweet corn in organic cultivation. Plant Pathol J 31:259–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korres NE (2013) The application of life cycle assessment on agricultural production systems with reference to lignocellulosic biogas and bioethanol production as transport fuels. In: Singh A, Pant D, Stig Irving O (eds) Life cycle assessment of renewable energy sources. Green energy and technology. Springer, London, pp 37–78

    Google Scholar 

  • Korres NE (2019) Herbicide effects on humans. Exposure, short and long-term effects and occupational hygiene. In: Korres NE, Burgos NR, Duke SO (eds) Weed control. Sustainability, hazards and risks in crop** systems worldwide. CRC Press, Boca Raton, pp 14–31

    Google Scholar 

  • Korres NE, Norsworthy JK (2017) Biohydrogen production from agricultural biomass and organic waste. In: Singh A, Rathore D (eds) Biohydrogen production: sustainability of current technology and future perspective. Springer, New Delhi, pp 49–67

    Chapter  Google Scholar 

  • Korres NE, Thamsiriroj T, Smyth BM, Nizami AS, Singh A, Murphy JD (2010a) Grass biomethane for agriculture and energy. Sus Agric Rev 7:5–49

    Google Scholar 

  • Korres NE, Singh A, Nizami AS, Murphy JD (2010b) Is grass biomethane a sustainable transport biofuel? Biofuels Bioprod Biorefin 4:310–325

    Article  CAS  Google Scholar 

  • Korres NE, O’Kiely P, Benzie JAH, West JS (2013) Bioenergy production by anaerobic digestion. Using agricultural biomass and organic waste. Taylor and Francis Publishing Group, New York, p 472

    Book  Google Scholar 

  • Korres NE, Norsworthy JK, Young BG, Reynolds DB, Johnson WG, Conley SP, Smeda RJ, Mueller TC, Spaunhorst DJ, Gage K, Loux M, Kruger GR, Bagavathiannan MV (2018) Seedbank persistence of Palmer amaranth (Amaranthus palmeri) and waterhemp (Amaranthus tuberculatus) across diverse geographical regions in the United States. Weed Sci 66:446–456

    Article  Google Scholar 

  • Korres NE, Burgos NR, Vurro M, Travlos I, Gitsopoulos TK, Varanasi VK, Duke SO, Kudsk P, Brabham C, Rouse CE, Salas-Perez R (2019) New directions for integrated weed management: Modern technologies, tools and knowledge discovery. Adv Agron 155:243–319

    Article  Google Scholar 

  • Kotay SM, Das D (2007) Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Bioresour Technol 98:1183–1190

    Article  CAS  PubMed  Google Scholar 

  • Krider JN, Rickman JD, Safley LM, DuPoldt C, Geter F, Stettler D, Murphy T (2009) Agricultural waste management system component design. Part 651, Agricultural Waste Management Field Handbook. Natural Resources Conservation Service. United States Department of Agriculture

    Google Scholar 

  • Krupp M, Widmann R (2009) Biohydrogen production by dark fermentation: experiences of continuous operation in large lab scale. Int J Hydrog Energy 34:4509–4516

    Article  CAS  Google Scholar 

  • Kumar S, Mishra IM, Adhikari DK (2008) Bioethanol production from bagasse with cell recycle at high temperature. J Biotechnol 136:S459

    Article  Google Scholar 

  • Kummamuru B, et al (2017) WBA global bioenergy statistics. World Bioenergy Association, www.worldbioenergy.org. Accessed January 2020

  • Lay JJ, Fan KS, Chang IJ, Ku CH (2003) Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. Int J Hydrog Energy 28:1361–1367

    Article  CAS  Google Scholar 

  • Lee CM, Chen PC, Wang CC, Tung YC (2002) Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. Int J Hydrog Energy 27:1309–1313

    Article  CAS  Google Scholar 

  • Li L, Zhou Y, Cheng X, Sun J, Marita J, Ralph J, Chiang V (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci U S A 100:4939–4944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabee WE, Roy DN (1999) The use of non-wood fibres in the pulp and paper industry. University of Toronto, Toronto

    Google Scholar 

  • Maeda I, Miyasaka H, Umeda F, Kawase M, Yagi K (2003) Maximization of hydrogen production ability in high-density suspension of Rhodovulum sulfidophilum cells using intracellular poly(3 hydroxybutyrate) as sole substrate. Biotechnol Bioeng 81:474–481

    Article  CAS  PubMed  Google Scholar 

  • Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2012) Nutrient leaching in a Colombian savanna Oxisol amended with biochar. J Environ Qual 41:1076–1086

    Article  CAS  PubMed  Google Scholar 

  • Manis S, Banerjee R (2008) Comparison of biohydrogen production processes. Int J Hydrog Energy 33:279–286

    Article  CAS  Google Scholar 

  • Marsden T (1999) Rural futures: the consumption countryside and its regulation. Sociol Rural 39:501–520

    Article  Google Scholar 

  • Matsunaka T, Sawamoto T, Ishimura H, Takakura K, Takekawa A (2006) Efficient use of digested cattle slurry from biogas plant with respect to nitrogen recycling in grassland. Int Congr Ser 1293:242–252

    Article  CAS  Google Scholar 

  • May-Tobin C (2011) Wood for fuel. In: Boucher D, Elias P, Lininger K, May-Tobin C, Roquemore S, Saxon E (eds) The root of the problem. What’s driving tropical deforestation today? Union of Concerned Scientists, Cambridge, pp 79–86

    Google Scholar 

  • McCarty PL (1982) One hundred years of anaerobic treatment. In: Hughes DE, Stafford DA, Wheatley BI, Baader W, Lettinga G, Nyns EJ, Verstraete W, Wentworth RL (eds) Anaerobic digestion, 1981. Elsevier, Amsterdam, pp 3–21

    Google Scholar 

  • McEniry J, Korres NE, O’Kiely P (2013) Grass and grass silage: agronomical characteristics and biogas production. In: Korres NE, O’Kiely P, Benzie JAH, West JS (eds) Bioenergy production by anaerobic digestion. Using agricultural biomass and organic waste. Routledge, London, pp 49–66

    Google Scholar 

  • Mehrani R, Barati M, Tavasoli A, Karimi A (2015) Hydrogen production via supercritical water gasification of bagasse using Ni–Cu/γ-Al2O3 nano-catalysts. Environ Technol 36:1265–1272

    Article  CAS  PubMed  Google Scholar 

  • Mengesha WK, Powell SM, Evans KJ, Barry KM (2017) Diverse microbial communities in non-aerated compost teas suppress bacterial wilt. World J Microbiol Biotechnol 33:49–55

    Article  CAS  PubMed  Google Scholar 

  • Mithen RF (2001) Glucosinolates and their degradation products. Adv Bot Res 35:213–262

    Article  CAS  Google Scholar 

  • Miyamoto K (1997) Renewable biological systems for alternative sustainable energy production. FAO Agricultural Services Bulletin – 128. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Mohd Din ARJ, Cheng KK, Sarmidi MR (2017) Assessment of compost extract on yield and phytochemical contents of Pak Choi (Brassica Rapa cv. Chinensis) grown under different fertilizer strategies. Commun Soil Sci Plant Anal 48:274–284

    Article  CAS  Google Scholar 

  • Mondal T, Datta JK, Mondal NK (2017) Chemical fertilizer in conjunction with biofertilizer and vermicompost induced changes in morpho-physiological and bio-chemical traits of mustard crop. J Saudi Soc Agric Sci 16:135–144

    Google Scholar 

  • Nagendran R (2011) Agricultural waste and pollution. In: Letcher TM, Vallero DA (eds) Waste: a handbook for management. Elsevier, Amsterdam, pp 341–355

    Chapter  Google Scholar 

  • Nath K, Kumar A, Das D (2006) Effect of some environmental parameters on fermentative hydrogen production by Enterobacter cloacae DM11. Can J Microbiol 52:525–532

    Article  CAS  PubMed  Google Scholar 

  • Nelson R (2007) Cellulosic ethanol/bioethanol in Kansas. Background report prepared for the Kansas Energy Council Biomass Committee, May 15, 2007

    Google Scholar 

  • Neureiter M (2013) Maize and maize silage for biomethane production. In: Korres NE, O’Kiely P, Benzie JAH, West JS (eds) Bioenergy production by anaerobic digestion. Using agricultural biomass and organic waste. Routledge, London, pp 67–82

    Google Scholar 

  • Ni M, Leung MKH, Sumathy K, Leung DYC (2006) Potential of renewable hydrogen production for energy supply in Hong Kong. Int J Hydrog Energy 31:1401–1412

    Article  CAS  Google Scholar 

  • Nizami AS, Murphy JD (2010) What is the optimal digester configuration for producing grass biomethane? Renew Sust Energ Rev 14:1558–1568

    Article  CAS  Google Scholar 

  • Nizami AS, Saville BA, MacLean HL (2013) Anaerobic digesters: perspectives and challenges. In: Korres NE, O’Kiely P, JAH B, West JS (eds) Bioenergy production by anaerobic digestion. Using agricultural biomass and organic wastes. Routledge, London, pp 139–152

    Google Scholar 

  • Norremark M, Sorensen CG, Jorgensen RN (2006) Hortibot: feasibility study of a plant nursing robot performing weeding operations-Part III. ASABE An. Int. Meeting Paper 067023. p 14

    Google Scholar 

  • Novaes W, Kirst M, Chiang V, Winter-Sederoff H, Sederoff R (2010) Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol 154:555–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NRC-National Research Council (U.S) (2004) The hydrogen economy: opportunities, costs, barriers, and R&D needs. National Academies Press, Washington, DC

    Google Scholar 

  • Ntaikou I, Antonopoulou G, Lyberatos G (2010) Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valor 1:21–39

    Article  CAS  Google Scholar 

  • Nuri A, Keskin T, Yuruyen A (2008) Enhancement of biogas production from olive mill effluent (OME) by co-digestion. Biomass Bioenergy 32:1195–1201

    Article  CAS  Google Scholar 

  • Obi FO, Ugwuishiwu BO, Nwakaire JN (2016) Agricultural waste concept, generation, utilization and management. Niger J Technol 35:957–964

    Article  Google Scholar 

  • Okamoto M, Miyahara T, Mizuno O, Noike T (2000) Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci Technol 41:25–32

    Article  CAS  PubMed  Google Scholar 

  • Ouda OKM, Raza SA, Nizami AS, Rehan M, Al-Waked R, Korres NE (2016) Waste to energy potential: a case study of Saudi Arabia. Renew Sust Energ Rev 61:328–340

    Article  Google Scholar 

  • PAN (Pesticide Action network) Europe (2017). Alternatives method in weed management to the use of glyphosate and other herbicides. Integrated weed management. Many little hummers. PAN Europe. The Greens/EFA in the European Parliament, p 54

    Google Scholar 

  • Parawira W, Read JS, Mattiasson B, Bjornsson L (2008) Energy production from agricultural residues: high methane yields in pilot-scale two-stage anaerobic digestion. Biomass Bioenergy 32:44–50

    Article  CAS  Google Scholar 

  • Paul GC, Solaiman ARM (2004) Changes in microbial biomass carbon and nitrogen in upland sugarcane soil amended with different organic materials. Commun Soil Sci Plant Anal 35:2433–2477

    Google Scholar 

  • Perez-Ruiz M, Brenes R, Urbano JM, Slaughter DC, Forcella F, Rodríguez-Lizana A (2018) Agricultural residues are efficient abrasive tools for weed control. Agron Sustain Dev 38:18

    Article  CAS  Google Scholar 

  • Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and Bioproducts industry: The technical feasibility of a billion-ton annual supply. Joint Study Sponsored by U.S. Department of Energy and U.S. Department of Agriculture, May 2005. DOE/GO-102005-2135 ORNL/TM-2005/66

    Google Scholar 

  • Pitkanen J, Aristidou A, Salusjarvi L, Ruohonen L, Penttila M (2003) Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metab Eng 5:16–31

    Article  CAS  PubMed  Google Scholar 

  • Rai Pankaj K, Singh SP, Asthana RK (2012) Biohydrogen production from cheese whey wastewater in a two-step anaerobic process. Appl Biochem Biotechnol 167:1540–1549

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Garcia R, Gohil N, Singh V (2019) Recent advances, challenges, and opportunities in bioremediation of hazardous materials. In: Pandey VC, Bauddh K (eds) Phytomanagement of polluted sites. Market opportunities in sustainable phytoremediation. Elsevier, Amsterdam, pp 517–568

    Chapter  Google Scholar 

  • Rao VP, Baral SS, Dey R, Mutnuri S (2010) Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renew Sust Energ Rev 14:2086–2094

    Article  CAS  Google Scholar 

  • Rice AR, Johnson-Maynard JL, Thill DC, Morra MJ (2007) Vegetable crop emergence and weed control following amendment with different Brassicaceae seed meals. Ren Agric Food Syst 22:204–212

    Article  Google Scholar 

  • Salimi M, Safari F, Tavasoli A, Shakeri A (2016) Hydrothermal gasification of different agricultural wastes in supercritical water media for hydrogen production: a comparative study. Int J Indus Chem 7:277–285

    Article  CAS  Google Scholar 

  • Sanchez-Gomez R, Zalacain A, Alonso GL, Salinas MR (2014) Vineshoot waste aqueous extracts for re-use in agriculture obtained by different extraction techniques: phenolic, volatile, and mineral compounds. J Agric Food Chem 62:10861–10872

    Article  CAS  PubMed  Google Scholar 

  • Scheuerell SJ, Mahaffee WF (2006) Variability associated with suppression of graymold (Botrytis cinerea) on geranium by foliar applications of nonaerated and aerated compost teas. Plant Dis 90:1201–1208

    Article  PubMed  Google Scholar 

  • Schroder C, Selig M, Schonheit P (1994) Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima – involvement of the Embden-Meyerhof pathway. Arch Microbiol 161:460–470

    CAS  Google Scholar 

  • Seppala M, Paavola T, Lehtomaki A, Rintala J (2009) Biogas production from boreal herbaceous grasses-specific methane yield and methane yield per hectare. Bioresour Technol 100:2952–2958

    Article  CAS  PubMed  Google Scholar 

  • Sequi P (1996) The role of composting in sustainable agriculture. In: Bertoldi M, Sequi P, Lemmens B, Papi T (eds) The science of composting. Blackie Academic & Professional, London, pp 23–29

    Chapter  Google Scholar 

  • Show KY, Yan YG, Lee DJ (2019) Biohydrogen production: Status and perspectives. In: Pandey A, Venkata Mohan S, Chang JS, Hallenbeck PC, Larroche C (eds) Biohydrogen, 2nd edn. Elsevier, Amsterdam, pp 391–341

    Chapter  Google Scholar 

  • Singh A, Pant D, Korres NE, Nizami AS, Prasad S, Murphy J (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass. Challenges and perspectives. Bioresour Technol 101:5003–5012

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Korres NE, Murphy JD (2011) Biomethane from agricultural waste: A clean vehicular biofuel. In: International conference on environment energy and development from Johensberg to Kopenhagen ICEED-2010, Sambalpur University, Orissa, India, December 10–12

    Google Scholar 

  • Smyth BM, Murphy JD, O’Brien C (2009) What is the energy balance of grass biomethane in Ireland and other temperate northern European climates? Renew Sust Energ Rev 13:2349–2360

    Article  CAS  Google Scholar 

  • Smyth BM, Gallachoir BPO, Korres NE, Murphy JD (2010) Can we meet targets for biofuels and renewable energy in transport given the constraints imposed by policy in agriculture and energy? J Clean Prod 18:1671–1685

    Article  Google Scholar 

  • Snyder A, Morra MJ, Johnson-Maynard JL, Thill DC (2009) Seed meals from Brassicaceae oilseed crops as soil amendments: influence on carrot growth, microbial biomass nitrogen, and nitrogen mineralization. Hortic Sci 44:354–361

    Google Scholar 

  • Soleimani M, Kaghazchi T (2007) Agricultural waste conversion to activated carbon by chemical activation with phosphoric acid. Chem Eng Technol 30:649–654

    Article  CAS  Google Scholar 

  • Sorensen B (2005) Hydrogen and fuel cells: emerging technologies and applications. Elsevier Academic Press, New York

    Google Scholar 

  • Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ et al (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41:973–989

    Article  CAS  PubMed  Google Scholar 

  • Tariq U, Rehman S, Khan MA, Younis A, Yaseen M, Ahsan M (2012) Agricultural and municipal waste as potting media components for the growth and flowering of Dahlia hortensis “Figaro”. Turk J Bot 36:378–385

    CAS  Google Scholar 

  • Tenca A, Schievano A, Perazzolo F, Adani F, Oberti R (2011) Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control. Bioresour Technol 102:8582–8588

    Article  CAS  PubMed  Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms, vol 3. Springer, Berlin

    Book  Google Scholar 

  • Tumuhairwe JB, Tenywa JS, Otabbong E, Ledin S (2009) Comparison of four low-technology composting methods for market crop wastes. Waste Manag 29:2274–2281

    Article  CAS  PubMed  Google Scholar 

  • Turner J, Sverdrup G, Mann MK, Maness PC, Kroposki B, Ghirardi M, Evans RJ, Blake D (2008) Renewable hydrogen production. Int J Energy Res 32:379–407

    Article  CAS  Google Scholar 

  • Vandevivere P, De Baere L, Verstraete W (2003) Types of anaerobic digester for solid wastes. In: Mata-Alvarez J (ed) Biomethanization of the organic fraction of municipal solid wastes. IWA Press, London, pp 112–140

    Google Scholar 

  • Venkata Mohan S, Babu LM, Reddy V, Mohanakrishna G, Sarma PN (2009) Harnessing of biohydrogen by acidogenic fermentation of Citrus limetta peelings: effect of extraction procedure and pretreatment of biocatalyst. Int J Hydrog Energy 34:6149–6156

    Article  CAS  Google Scholar 

  • Veziroglu TN, Sahin S (2008) 21st century’s energy: hydrogen energy system. Ener Convers Manage 49:1820–1831

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Ahmad D, Bin Ibrahim MK (2006) Biohydrogen generation from jackfruit peel using anaerobic contact filter. Int J Hydrog Energy 31:569–579

    Article  CAS  Google Scholar 

  • Waqas M, Nizami AS, Aburiazaiza AS, Barakat MA, Ismail IMI, Rashid MI (2017) Optimization of food waste compost with the use of biochar. J Environ Manag 216:70–81

    Article  CAS  Google Scholar 

  • Waqas M, Korres NE, Khan MD, Nizami AS, Deeba F, Ali I, Hussain H (2019) Advances and methods of seed priming. In: Hasanuzzaman M, Fotopoulos V (eds) Priming and pretreatment of seeds and seedlings: implication in plant stress tolerance and enhancing productivity in crop plants. Springer, Singapore, pp 11–35

    Chapter  Google Scholar 

  • Weltzien HC (1991) Biocontrol of foliar fungal disease with compost extracts. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 430–450

    Chapter  Google Scholar 

  • Wilson GA (2007) Multifunctional agriculture. A transition theory perspective. CABI International, Wallingford

    Book  Google Scholar 

  • Wilson SB, Muller KL, Wilson PC, Incer MR, Stoffella PJ, Graetz DA (2009) Evaluation of new container media for Aglaonema production. Commun Soil Sci Plant Anal 40:2673–2687

    Article  CAS  Google Scholar 

  • Wortman SE (2014) Integrating weed and vegetable crop management with multifunctional air-propelled abrasive grits. Weed Technol 28:243–252

    Article  Google Scholar 

  • Wortman SE (2015) Air-propelled abrasive grits reduce weed abundance and increase yields in organic vegetable production. Crop Prot 77:157–162

    Article  Google Scholar 

  • Wu X, Zhu J, Dong C, Miller C, Li Y, Wang L, Yao W (2009) Continuous biohydrogen production from liquid swine manure supplemented with glucose using an anaerobic sequencing batch reactor. Int J Hydrog Energy 34:6636–6645

    Article  CAS  Google Scholar 

  • Wu X, Yao W, Zhu J, Miller C (2010) Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source. Bioresour Technol 101:4042–4047

    Article  CAS  PubMed  Google Scholar 

  • Wyman CE (1994) Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresour Technol 50:3–16

    Article  CAS  Google Scholar 

  • Xu L, Geelen D (2018) Develo** biostimulants from agro-food and industrial by-products. Front Plant Sci 9:1567

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokoi H, Mori S, Hirose J, Hayashi S, Takasaki Y (1998) H2 production from starch by mixed culture of Clostridium butyricum and Rhodobacter sp M-19. Biotechnol Lett 20:895–899

    Article  CAS  Google Scholar 

  • Yongzhen T, Yang C, Yongqiang W, Yanling H, Zhihua Z (2007) High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. Int J Hydrog Energy 32:200–206

    Article  CAS  Google Scholar 

  • Younis A, Ahmad M, Riaz A, Khan MA (2007) Effect of different potting media on the growth and flowering of Dahlia coccinia cv. Mignon. Acta Hortic 804:191–196

    Google Scholar 

  • Zhang T, Liu L, Song Z, Ren G, Feng Y, Han X, Yang G (2013a) Biogas production by co-digestion of goat manure with three crop residues. PLoS One 8(6):e66845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Li C, Davies EGR, Liu Y (2013b) Agricultural waste. Water Environ Res 85:1377–1451

    Article  Google Scholar 

  • Zhang Q, Zhang Z, Wang Y, Lee DJ, Li G, Zhou X, Jiang D, Xu B, Lu C, Ge X (2018) Sequential dark and photo fermentation hydrogen production from hydrolyzed corn stover: A pilot test using 11 m3 reactor. Bioresour Technol 253:382–386

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Li Y, Wu X, Miller C, Chen P, Ruan R (2009) Swine manure fermentation for hydrogen production. Bioresour Technol 100:5472–5477

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by an appointment to the Agricultural Research Service (ARS) Research Participation Program administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA). ORISE is managed by ORAU under DOE contract number DE-SC0014664. All opinions expressed in this paper are the author's and do not necessarily reflect the policies and views of USDA, DOE, or ORAU/ORISE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas E. Korres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korres, N.E. (2020). Utilization and Management of Agricultural Wastes for Bioenergy Production, Weed Control, and Soil Improvement Through Microbial and Technical Processes. In: Singh, A., Srivastava, S., Rathore, D., Pant, D. (eds) Environmental Microbiology and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6021-7_8

Download citation

Publish with us

Policies and ethics

Navigation