Interactive Biology of Auxins and Phenolics in Plant Environment

  • Chapter
  • First Online:
Plant Phenolics in Sustainable Agriculture

Abstract

Plant environment is a complex system where coordinated interactive biology involving various metabolite products and other intermediates determines the overall development and growth of plant. Among the phytohormones, auxins play a fundamental role in various signaling pathways involving other hormones and metabolites affecting cell division and differentiation of plant tissues. Likewise, phenolics are the secondary metabolites secreted by plants that play a key role as defense agents during environmental stress conditions. Biosynthesis of auxins and phenolics follows different metabolic pathways, although shikimate pathway is considered as the root for the production of auxins and phenolics following the synthesis of their corresponding precursors. The interactions between these two compounds may have some physiological and biochemical alterations in plant metabolism, thus affecting plant biology. In addition, the role of soil microbiota is also evident to mediate the communicative behavior of both auxins and phenolics. Phenolic compounds may affect auxin transport and play its role in defense signaling of plants. Some representative examples regarding interactive biology of auxins and phenolic compounds under in vitro conditions are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal Behav 7(6):636–641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmed A, Hasnain S (2010) Auxin-producing Bacillus sp.: Auxin quantification and effect on the growth of Solanum tuberosum. Pure Appl Chem 82(1):313–319

    Article  CAS  Google Scholar 

  • Aslam T, Ahmed A (2018) Lead-tolerant bacteria can minimize lead toxicity in plants. RADS J Biol Res Appl Sci 9(1):1–7

    Article  Google Scholar 

  • Attaran E, Major IT, Cruz JA et al (2014) Temporal dynamics of growth and photosynthesis suppression in response to jasmonate signaling. Plant Physiol 165(3):1302–1314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57(1):233–266

    Article  PubMed  CAS  Google Scholar 

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and Agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99(1):191–203

    Article  CAS  Google Scholar 

  • Baleroni CRS, Ferrarese MLL, Souza NE et al (2000) Lipid accumulation during canola seed germination in response to cinnamic acid derivatives. Biol Plant 43(2):313–316

    Article  CAS  Google Scholar 

  • Baque MA, Hahn EJ, Paek KY (2010) Growth, secondary metabolite production and antioxidant enzyme response of Morinda citrifolia adventitious root as affected by auxin and cytokinin. Plant Biotechnol Rep 4(2):109–116

    Article  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488

    Article  PubMed  CAS  Google Scholar 

  • Benková E, Michniewicz M, Sauer M et al (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115(5):591–602

    Article  PubMed  Google Scholar 

  • Bernasconi P (1996) Effect of synthetic and natural protein tyrosine kinase inhibitors on auxin efflux in zucchini (Cucurbita pepo) hypocotyls. Physiol Plant 96(2):205–210

    Article  CAS  Google Scholar 

  • Bertin C, Yang XH, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256(1):67–83

    Article  CAS  Google Scholar 

  • Bhattacharya A, Sood P, Citovsky V (2010) The roles of plant phenolics in defence and communication during agrobacterium and rhizobium infection. Mol Plant Pathol 11(5):705–719

    PubMed  PubMed Central  CAS  Google Scholar 

  • Boudet A (2007) Evolution and current status of research in phenolic compounds. Phytochemistry 68(22–24):2722–2735

    Article  PubMed  CAS  Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56(11):317–333

    Article  PubMed  CAS  Google Scholar 

  • Brown DE, Rashotte AM, Murphy AS et al (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126(2):524–535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol 140(4):1384–1396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chapman EJ, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43(1):265–285

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20(13):1790–1799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19(8):2430–2439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clé C, Hill LM, Niggeweg R et al (2008) Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance. Phytochemistry 69(11):2149–2156

    Article  PubMed  CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. In: Food security in nutrient-stressed environments: exploiting plants’ genetic capabilities. Springer, Dordrecht, pp 201–213

    Chapter  Google Scholar 

  • Darwin C, Darwin F (1880) Sensitiveness of plants to light: it‘s transmitted effect. The power of movement in plants. pp 574−592

    Google Scholar 

  • Davies PJ (ed) (2004) Plant hormones: biosynthesis, signal transduction, action! Springer, Dordrecht

    Google Scholar 

  • Friml J (2003) Auxin transport—sha** the plant. Curr Opin Plant Biol 6(1):7–12

    Article  PubMed  CAS  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64(1):839–863

    Article  PubMed  CAS  Google Scholar 

  • George EF (1996) Plant propagation by tissue culture. Edington, Springer Science Business Media

    Google Scholar 

  • Habib S, Fatima H, Ahmed A (2019) Comparative analysis of pre-germination and post-germination inoculation treatments of Zea mays L. to mitigate chromium toxicity in Cr-contaminated soils. Pol J Environ Stud 28(2):597–607

    Article  Google Scholar 

  • Halvorson JJ, Gonzalez JM, Hagerman AE et al (2009) Sorption of tannin and related phenolic compounds and effects on soluble-N in soil. Soil Biol Biochem 41(9):2002–2010

    Article  CAS  Google Scholar 

  • Harborne JB (1980) Plant phenolics. In: Bell EA, Charlwood BV (eds) Encyclopedia of plant physiology, secondary plant products, new series, Springer Verlag, vol 8. Berlin, Heidelberg, New York, pp 329–402

    Chapter  Google Scholar 

  • Harborne JB, Simmonds NW (1964) Natural distribution of the phenolic aglycones. In: Harborne JB (ed) Biochemistry of phenolic compounds. Academic Press, London, pp 77–128

    Google Scholar 

  • Hartley SE (1999) Are gall insects large rhizobia? Oikos 84(2):333–342

    Article  Google Scholar 

  • Hartley RD, Harris PJ (1981) Phenolic constituents of the cell walls of dicotyledons. Biochem Syst Ecol 9(2–3):189–203

    Article  CAS  Google Scholar 

  • Hartwig UA, Maxwell CA, Joseph CM et al (1990) Chrysoeriol and luteolin released from alfalfa seeds induce nod genes in Rhizobium meliloti. Plant Physiol 92(1):116–122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15(6):238–242

    Article  PubMed  Google Scholar 

  • Hollman PCH (2001) Evidence for health benefits of plant phenols: local or systemic effects? J Sci Food Agric 81(9):842–852

    Article  CAS  Google Scholar 

  • Huot B, Yao J, Montgomery BL et al (2014) Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant 7(8):1267–1287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jacobs M, Rubery PH (1988) Naturally occurring auxin transport regulators. Science 241(4863):346–349

    Article  PubMed  CAS  Google Scholar 

  • Jansen MA, van den Noort RE, Tan MY et al (2001) Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress. Plant Physiol 126(3):1012–1023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones OP, Hatfield SGS (1976) Root initiation in apple shoots cultured in vitro with auxins and phenolic compounds. J Horti Sci 51(4):495–499

    Article  CAS  Google Scholar 

  • Karamat M, Ahmed A (2018) Impact of Arthrobacter mysorens, Kushneria avicenniae, Halomonas spp and Bacillus sp on Helianthus annuus L for growth enhancement. J Anim Plant Sci 28(6):1629–1634

    CAS  Google Scholar 

  • Kefeli VI, Kadyrov CS (1971) Natural growth inhibitors, their chemical and physiological properties. Annu Rev Plant Physiol 22(1):185–196

    Article  CAS  Google Scholar 

  • Kefeli VI, Kalevitch MV, Borsari B (2003) Phenolic cycle in plants and environment. J Cell Mol Biol 2(1):13–18

    Google Scholar 

  • Kraus TEC, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystems – a review. Plant Soil 256(1):41–66

    Article  CAS  Google Scholar 

  • Lattanzio V (2013) Phenolic compounds: introduction. In: Ramawat GK (ed) Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes, pp 1543–1580

    Chapter  Google Scholar 

  • Lewis DR, Negi S, Sukumar P et al (2011) Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 138(16):3485–3495

    Article  PubMed  CAS  Google Scholar 

  • Lokerse AS, Weijers D (2009) Auxin enters the matrix—assembly of response machineries for specific outputs. Curr Opin Plant Biol 12(5):520–526

    Article  PubMed  CAS  Google Scholar 

  • Madhan SSR, Girish R, Karthik N et al (2009) Allelopathic effects of phenolics and terpenoids extracted from Gmelina arborea on germination of black gram (Vigna mungo) and green gram (Vigna radiata). Allelopathy J 23(2):323–332

    Google Scholar 

  • Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63(8):2853–2872

    Article  PubMed  CAS  Google Scholar 

  • Matveeva TV, Lutova LA, Nester Y (2001) Tumor formation in plants. Russ J Genet 37(9):993–1001

    Article  CAS  Google Scholar 

  • Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10):16240–16265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy A, Taiz L (1999) Naphthylphthalamic acid is enzymatically hydrolyzed at the hypocotyl-root transition zone and other tissues of Arabidopsis thaliana seedlings. Plant Physiol Biochem 37(6):413–430

    Article  CAS  Google Scholar 

  • Murphy A, Peer WA, Taiz L (2000) Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta 211(3):315–324

    Article  PubMed  CAS  Google Scholar 

  • Mutka AM, Fawley S, Tsao T et al (2013) Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid-mediated defenses. Plant J 74(5):746–754

    Article  PubMed  CAS  Google Scholar 

  • Newman MA, Dow JM, Molinaro A et al (2007) Priming, induction and modulation of plant defense responses by bacteria lipopolysaccharides. J Endotoxin Res 13(2):69–84

    Article  PubMed  CAS  Google Scholar 

  • Nonhebel HM (2015) Tryptophan-independent indole-3-acetic acid synthesis: critical evaluation of the evidence. Plant Physiol 169(2):1001–1005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Normanly J, Cohen JD, Fink GR (1993) Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3- acetic acid. Proc Natl Acad Sci U S A 90(21):10355–10359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ongena M, Jourdan E, Adam A et al (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9(4):1084–1090

    Article  PubMed  CAS  Google Scholar 

  • Ouyang J, Shao X, Li J (2000) Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. Plant J 24(3):327–333

    Article  PubMed  CAS  Google Scholar 

  • Ozyigit II, Kahraman MV, Ercan O (2007) Relation between explant age, total phenols and regeneration response of tissue cultured cotton (Gossypium hirsutum L). Afr J Biotechnol 6(1):3–8

    CAS  Google Scholar 

  • Pan P, Woehl E, Dunn MF (1997) Protein architecture, dynamics and allostery in tryptophan synthase channeling. Trends Biochem Sci 22(1):22–27

    Article  PubMed  CAS  Google Scholar 

  • Park JE, Park JY, Kim YS et al (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282(13):10036–10046

    Article  PubMed  CAS  Google Scholar 

  • Peer WA, Murphy AS (2007) Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci 12(12):556–563

    Article  PubMed  CAS  Google Scholar 

  • Peer WA, Bandyopadhyay A, Blakeslee JJ et al (2004) Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell 16(7):1898–1911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64(1):180–201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petrášek J, Friml J (2009) Auxin transport routes in plant development. Dev 136(16):2675–2688

    Article  CAS  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y et al (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12(3):98–105

    Article  PubMed  CAS  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y et al (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32(2):158–169

    Article  PubMed  Google Scholar 

  • Reddy PM, Rendón-Anaya M, de los Dolores Soto del Rio M et al (2007) Flavonoids as signalling molecules and regulators of root nodule development. Dyn Soil Dyn Plant 1(2):83–94

    Google Scholar 

  • Robert-Seilaniantz A, MacLean D, Jikumaru Y et al (2011) The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. Plant J 67(2):218–231

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Moreno C (2002) Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci Technol Int 8(3):121–137

    Article  Google Scholar 

  • Santos-Sánchez NF, Salas-Coronado R, Hernández-Carlos B et al (2019) Shikimic acid pathway in biosynthesis of phenolic compounds. In: Plant physiological aspects of phenolic compounds. IntechOpen, London

    Google Scholar 

  • Sarkar D, Naik PS (2000) Phloroglucinol enhances growth and rate of axillary shoot proliferation in potato shoot tip cultures in vitro. Plant Cell Tissue Organ Cult 60(2):139–149

    Article  CAS  Google Scholar 

  • Schmitz-Hoerner R, Weissenbock G (2003) Contribution of phenolic compounds to the UV-B screening capacity of develo** barley primary leaves in relation to DNA damage and repair under elevated UV-B levels. Phytochemistry 64(1):243–255

    Article  PubMed  CAS  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29(5):909–918

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Serban B, Rowe M et al (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17(2):616–627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J et al (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133(1):177–191

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Dhonukshe P, Brewer PB et al (2006) Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell Mol Life Sci 63(23):2738–2754

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Ferrer JL, Ljung K et al (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133(1):164–176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8(3):317–323

    Article  PubMed  CAS  Google Scholar 

  • Thomas P, Ravindra MB (1999) Shoot tip culture in mango: influence of medium, genotype, explant factors, season and decontamination treatments on phenolic exudation, explant survival and axenic culture establishment. J Hortic Sci 72(5):713–722

    Article  Google Scholar 

  • Tomás-Barberán FA, Espín JC (2001) Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J Sci Food Agri 81(9):853–876

    Article  Google Scholar 

  • Tran H, Ficke A, Aslimwe T et al (2007) Role of the cyclic lipopeptide massetolide a in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175(4):731–742

    Article  PubMed  CAS  Google Scholar 

  • Uddin MR, Li X, Won OJ et al (2012) Herbicidal activity of phenolic compounds from hairy root cultures of Fagopyrum tataricum. Weed Res 52(1):25–33

    Article  CAS  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136(6):1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Vickery ML, Vickery B (1981) The acetate-mevalonate pathway. In: Secondary plant metabolism. Palgrave, London, pp 112–156

    Chapter  Google Scholar 

  • Wang D, Pajerowska-Mukhtar K, Culler AH et al (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17(20):1784–1790

    Article  PubMed  CAS  Google Scholar 

  • Webster G, Jain V, Davey MR et al (1998) The flavonoid naringenin stimulates the intercellular colonization of wheat roots by Azorhizobium caulinodans. Plant Cell Environ 21(4):373–383

    Article  CAS  Google Scholar 

  • Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7(4):472–479

    Article  PubMed  CAS  Google Scholar 

  • Went F (1926) On growth-accelerating substances in the coleoptile of Avena sativa. Proc Kon Akad Wetensch Amsterdam 30:10–19

    Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52(supp_1)):487–511

    Article  PubMed  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95(5):707–735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wright AD, Sampson MB, Neuffer MG et al (1991) Indole-3-acetic acid biosynthesis in the mutant maize orange pericarp, a tryptophan auxotroph. Science 254(5034):998–1000

    Article  PubMed  CAS  Google Scholar 

  • Xuan TD, Shinkichi T, Khanh TD (2005) Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: an overview. Crop Prot 24(3):197–206

    Article  Google Scholar 

  • Zhang Y, Goritschnig S, Dong X et al (2003) A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15(11):2636–2646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Wang M, Li Z et al (2008a) Arabidopsis GH3.5 regulates salicylic acid-dependent and both NPR1-dependent and independent defense responses. Plant Signal Behav 3(8):537–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Wang B, Ouyang J et al (2008b) Arabidopsis indole synthase, a homolog of tryptophan synthase alpha, is an enzyme involved in the Trp-independent indole-containing metabolite biosynthesis. J Integr Plant Biol 50(9):1070–1077

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61(1):49–64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5(2):334–338

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20(1):10–16

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, A., Tariq, A., Habib, S. (2020). Interactive Biology of Auxins and Phenolics in Plant Environment. In: Lone, R., Shuab, R., Kamili, A. (eds) Plant Phenolics in Sustainable Agriculture . Springer, Singapore. https://doi.org/10.1007/978-981-15-4890-1_5

Download citation

Publish with us

Policies and ethics

Navigation