The Contribution of Agroforestry to Restoration and Conservation: Biodiversity Islands in Degraded Landscapes

  • Chapter
  • First Online:
Agroforestry for Degraded Landscapes

Abstract

Biodiversity islands can contribute to protect biodiversity in human-dominated landscapes. Agroforestry systems (AFS), as they can harmonize productivity with environmental functions, can be part of biodiversity islands, especially in the buffer zones of protected areas. AFS are heterogeneous in their design and management, with consequences for their restoration and conservation functions. This chapter discusses the role of AFS on restoration and conservation of biodiversity at the ecosystem and landscape levels, with emphasis on tropical Latin America and examples from other regions.

Multistrata AFS of home gardens and successional agroforestry hold the largest biodiversity. Home gardens can be as diverse in humid as in dry ecosystems as people in poorer areas take special care of these AFS that provide for their subsistence. Home gardens are rich in genetic resources as people domesticate preferred native species, and they are also sites for conservation of species that are only found in these AFS, while they have been extirpated from the wild. Development projects are currently working with farmers in identifying lesser known species of fruits and medicinals and other species from home gardens, hel** farmers in nursery establishment as well as reaching specialized markets. Both traditional and modern successional AFS combine restoration and biodiversity objectives.

Perennial crops under shade (coffee, cacao, yerba mate) exist in a range from traditional multistrata assemblages to more simple designs with fewer tree species, and their function in biodiversity conservation varies accordingly. Differential prices paid for organic/biodiversity-friendly products from AFS may act as incentives for promotion of agroforestry-based systems.

Diversity of birds, arthropods, and other fauna is greater in silvopastoral systems (SPS) than in conventional pastures. Tree cover is the main factor associated with diversity in SPS, and a compromise must be found to reach cover that sustains biodiversity while not decreasing productivity. Recent research and development of SPS has resulted in more complex designs such as the intensive SPS (ISPS) which use agroecological principles resulting in more productive and environmentally friendly systems. Payments for environmental services (PES) have been successful in Latin America to promote SPS and ISPS, including planting more native trees (focal species).

Living fences and windbreaks are often the only arboreal component in agricultural landscapes, and they serve roles in connectivity among forest patches. Adding more complexity to these linear systems contributes to their biodiversity value, but it may compromise their utilitarian functions. Recommendations are given to use AFS designs and practices to favor biodiversity and their inclusion as part of biodiversity islands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abete T, Wiersum KF, Bongers F, Sterck F (2006) Diversity and dynamics in homegardens of southern Ethiopia. Pp. 123–142 In: B. M. Kumar and P. K. R. Nair (eds) Tropical homegardens: a time-tested example of sustainable agroforestry. Advances in agroforestry 3. Springer Science, Dordrecht. 377 p.

    Google Scholar 

  • Angelsen A, Jagger P, Babigumira R, Belcher B, Hogarth N, Bauch S, Borner J, Smith-Hall C, Wunder S (2014) Environmental income and rural livelihoods. A global-comparative analysis. World Develop 64(S):S12–S28. http://www.sciencedirect.com/science/article/pii/S0305750X14000722

    Google Scholar 

  • Araújo Santana MR, Navarrete Gutiérrez DA, Mateo Sánchez JJ (2015) Riqueza de especies en huertos caseros de tres municipios de la región Otomí Tepehua, Hidalgo, México, pp. 405–420. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas agroforestales. Funciones productivas, socioeconómicas y ambientales. Serie Técnica Informe Técnico 402, CATIE, Turrialba, Costa Rica. Fundación CIPAV, Cali, 454 p

    Google Scholar 

  • Berg KE (2017) Fuel alternatives for develo** countries. In: Montagnini F (ed) Integrating Landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry, vol 12. Springer, Cham, pp 311–330

    Google Scholar 

  • Bertsch A (2017) Indigenous successional agroforestry: integrating the old and new to address food insecurity and deforestation. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry, vol 12. Springer, Cham, pp 165–178

    Google Scholar 

  • Bhagwat SA, Katherine J, Willis H, Birks JB, Whittaker RJ (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol 23(5):261–267

    Google Scholar 

  • Blanckaert I, Swennen RL, Paredes Flores M, Rosas López R, Lira Saade R (2004) Floristic composition, plant uses and management practices in homegardens of San Rafael Coxcatlán, Valley of Tehuacán, Mexico. J Arid Environ 57:39–62

    Google Scholar 

  • Brewer MD (2011) Strategies for cost-effective native species restoration in the sub-tropical Atlantic forest of Southern Brazil. In: Montagnini F, Finney C (eds) Restoring degraded landscapes with native species in Latin America. Nova Science, New York, pp 173–195

    Google Scholar 

  • Calle A, Montagnini F, Zuluaga AF (2009) Farmer’s perceptions of silvopastoral system promotion in Quindío, Colombia. Bois For Trop 300(2):79–94

    Google Scholar 

  • Calle Z, Murgueitio E, Chará J (2012) Integrating forestry, sustainable cattle ranching, and landscape restoration. Unasylva 63:31–40

    Google Scholar 

  • Calle Z, Murgueitio E, Chará J, Molina CH, Zuluaga AF, Calle A (2013) A strategy for scaling-up intensive silvopastoral systems in Colombia. J Sust For 32(7):677–693

    Google Scholar 

  • Calle Z, Hernández M, Murgueitio E, Giraldo AM, Uribe F, Zuluaga AF (2015) Especies focales del Proyecto Ganadería Colombiana Sostenible. Carta Fedegán 148:54–60

    Google Scholar 

  • Calle Z, Giraldo AM, Cardozo A, Galindo A, Murgueitio E (2017) Enhancing biodiversity in neotropical silvopastoral systems: use of indigenous trees and palms. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry, vol 12. Springer, Cham, pp 417–438

    Google Scholar 

  • Callo-Concha D, Denich M (2011) Operationalizing environmental services of agroforestry systems: Functional biodiversity assessment in Tomé-Açú, Pará, Brazil. In: Montagnini F, Francesconi W, Rossi E (eds) Agroforestry as a tool for landscape restoration. Nova Science, New York, pp 143–156

    Google Scholar 

  • Calmon M, Brancalion PH, Paese A, Aronson J, Castro P, da Silva SC, Rodrigues RR (2011) Emerging threats and opportunities for large-scale ecological restoration in the Atlantic Forest of Brazil. Restor Ecol 19(2):154–158

    Google Scholar 

  • Cerda R, Deheuvels O, Calvache R, Niehaus L, Saenz Y, Kent J, Vilchez S, Villota A, Martinez C, Somarriba E (2014) Contribution of cocoa agroforestry systems to family income and domestic consumption: looking toward intensification. Agroforest Syst. https://doi.org/10.1007/s10457-014-9691-8

  • Chait G (2015) Café en Colombia: servicios ecosistémicos, conservación de la biodiversidad. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas Agroforestales. Funciones productivas, socioeconómicas y ambientales. Serie Técnica Informe Técnico 402, CATIE, Turrialba, Costa Rica, Fundación CIPAV, Cali, pp 349–361

    Google Scholar 

  • Chará J, Camargo JC, Calle Z, Bueno L, Murgueitio E, Arias L, Dossman M, Molina EJ (2015) Servicios ambientales de sistemas silvopastoriles intensivos: mejoramiento del suelo y restauración ecológica. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas agroforestales: funciones productivas, socioeconómicas y ambientales. Serie técnica informe técnico No. 402, CATIE, Turrialba, Costa Rica. Editorial CIPAV, Cali, pp 331–347

    Google Scholar 

  • Chará JD, Rivera J, Barahona R, Murgueitio E, Deblitz C, Reyes E, Martins Mauricio R, Molina JJ, Flores M, Zuluaga AF (2017) Intensive silvopastoral systems: economics and contribution to climate change mitigation and public policies. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry, vol 12. Springer, Cham, pp 395–416

    Google Scholar 

  • Clough Y, Barkmann J, Juhrbandt J, Kessler M, Cherico Wangera T, Anshary A, Buchorig D, Cicuzza D, Darrasi K, Dwi Putrak D, Erasmi S, Pitopang M, Schmidt C, Schulze CH, Seidell D, Steffan-Dewenter I, Stenchly K, Vidal S, Weista M, Wielgoss AW, Tscharntkea T (2011) Combining high biodiversity with high yields in tropical agroforests. Proc Natl Acad Sci U S A 108(20):8311–8316

    CAS  Google Scholar 

  • Cockle KL, Leonard ML, Bodrati AA (2005) Presence and abundance of birds in an Atlantic forest reserve and adjacent plantation of shade-grown yerba mate, in Paraguay. Biodivers Conserv 14:3265–3288

    Google Scholar 

  • Crespin SJ, Simonetti JA (2019) Reconciling farming and wild nature: Integrating human–wildlife coexistence into the land-sharing and land-sparing framework. Ambio 48:131–138. https://doi.org/10.1007/s13280-018-1059-2

    Article  Google Scholar 

  • Davidson S (2005) Shade coffee agro-ecosystems in Mexico: a synopsis of the environmental services and socio-economic considerations. J Sust For 21(1):81–95; and Environ Serv Agrofor Syst (ed: Montagnini F). Haworth Press, pp 81–95

    Google Scholar 

  • Diemont SAW, Martin JF, Levy-Tacher SI (2006) Lacandon Maya forest management: restoration of soil fertility using native tree species. Ecol Eng 28:205–212

    Google Scholar 

  • Diemont SAW, Bohn JL, Rayome DD (2011) Comparisons of Mayan forest management, restoration, and conservation. For Ecol Manag 261:1696–1705

    Google Scholar 

  • Eibl B, Montagnini F, López M, Montechiesi R, Barth S, Esterche E (2015) Ilex paraguariensis A. St.-Hil., yerba mate orgánica bajo dosel de especies nativas maderables, una propuesta de producción sustentable. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas agroforestales: funciones productivas, socioeconómicas y ambientales. Serie técnica informe técnico No. 402, CATIE, Turrialba, Costa Rica. Editorial CIPAV, Cali, pp 153–177

    Google Scholar 

  • Eibl B, Montagnini F, López M, López LN, Montechiesi R, Esterche E (2017) Organic yerba mate, Ilex paraguariensis, in association with native tree species: a sustainable production alternative. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry, vol 12. Springer, Cham, pp 261–281

    Google Scholar 

  • Fajardo ND, González RJ, Neira LA (2009) Sistemas Ganaderos Amigos de las Aves. In: Murgueitio E, Cuartas C, Naranjo J (eds) Ganadería del futuro: Investigación para el desarrollo, 2nd edn. Fundación CIPAV, Cali, pp 171–203

    Google Scholar 

  • FAO (2015) Global forest resources assessment 2010. Key findings. FAO, Rome

    Google Scholar 

  • Francesconi W, Montagnini F (2015) Los SAF como estrategia para favorecer la conectividad funcional del paisaje fragmentado. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas agroforestales: funciones productivas, socioeconómicas y ambientales. Serie técnica informe técnico No. 402, CATIE, Turrialba, Costa Rica. Editorial CIPAV, Cali, pp 363–379

    Google Scholar 

  • Francesconi W, Montagnini F, Ibrahim M (2011a) Living fences as linear extensions of forest remnants: a strategy for restoration of connectivity in agricultural landscapes. In: Montagnini F, Finney C (eds) Restoring degraded landscapes with native species in Latin America. Nova Science, New York, pp 115–126

    Google Scholar 

  • Francesconi W, Montagnini F, Ibrahim M (2011b) Using bird distribution to evaluate the potential of living fences to restore landscape connectivity in pasturelands. In: Montagnini F, Francesconi W, Rossi E (eds) Agroforestry as a tool for landscape restoration. Nova Science, New York, pp 133–142

    Google Scholar 

  • Giraldo C, Escobar F, Chará J, Calle Z (2011) The adoption of silvopastoral systems promotes the recovery of ecological processes regulated by dung beetles in the Colombian Andes. Insect Conserv Diver 4:115–122

    Google Scholar 

  • Gobbi JA (2000) Is biodiversity-friendly coffee financially viable? An analysis of five different coffee production systems in western El Salvador. Ecol Econ 33:267–281

    Google Scholar 

  • Gockowski J, Tchatat M, Dondjang JP, Hietet G, Fouda T (2010) An Empirical Analysis of the Biodiversity and Economic Returns to Cocoa Agroforests in Southern Cameroon. J Sustain For 29(6):638–670. https://doi.org/10.1080/10549811003739486

    Article  Google Scholar 

  • González-Soberanis C, Casas A (2004) Traditional management and domestication of tempesquistle, Sideroxylon palmeri (Sapotaceae) in the Tehuacan-Cuicatlán Valley, Central México. J Arid Environ 59:245–258

    Google Scholar 

  • Griffith DM (2000) Agroforestry: a refuge for tropical biodiversity after fire. Conserv Biol 14:325–326

    Google Scholar 

  • Gross L, Castro-Tanzi S, Scherr SJ (2016) Connecting farms to landscapes for biodiversity conservation. The CAMBio project in Central America. Ecoagriculture Discussion Paper No. 15, Ecoagriculture Partners, Washington, DC, 31 p

    Google Scholar 

  • Guindon C (1996) The importance of forest fragments to the maintenance of regional biodiversity in Costa Rica. In: Schelhas J, Greenberg R (eds) Forest patches in tropical landscapes. Island Press, Washington, DC, pp 168–186

    Google Scholar 

  • Harvey CA, Haber WH (1999) Remnant trees and the conservation of biodiversity in Costa Rican pastures. Agrofor Syst 44:37–68

    Google Scholar 

  • Harvey C, Villanueva C, Villacís J, Chacón M, Muñoz D, López M, Ibrahim M, Gómez R, Taylor R, Martínez J, Navas A, Sáenz J, Sánchez D, Medina A, Vílches S, Hernández B, Pérez A, Ruíz F, López F, Lang I, Kunth S, Sinclair F (2005) Contribution of live fences to the ecological integrity of agricultural landscapes. Agric Ecosyst Environ 111:200–230

    Google Scholar 

  • Harvey CA, Komar O, Chazdon R, Ferguson BG, Finegan B, Griffith DM, Martínez-Ramos M, Morales H, Nigh R, Soto-Pinto L, Van Breugel M, Wishnie M (2008) Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Cons Biol 22(1):8–15

    Google Scholar 

  • Hobbs RJ, Walker LR, Walker J (2007) Integrating restoration and succession. In: Walker LR, Walker J, Hobbs RJ (eds) Linking restoration and ecological succession. Springer, New York, pp 168–179

    Google Scholar 

  • House PH, Ochoa L (1998) La diversidad de especies útiles en diez huertos en la aldea de Camalote, Honduras. In: Lok R (ed) Huertos caseros tradicionales de América Central: características, beneficios e importancia, desde un enfoque multidisciplinario. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Turrialba, Costa Rica, pp 61–84

    Google Scholar 

  • Ibrahim M, Camargo JC (2001) ¿Cómo aumentar la regeneración de árboles maderable en potreros? Agroforestería en las Américas 8(32):35–41

    Google Scholar 

  • Ibrahim M, Casasola F, Villanueva C, Murgueitio E, Ramírez E, Sáenz S, Sepúlveda C (2011) Payment for Environmental Services as a tool to encourage the adoption of silvo-pastoral systems and restoration of agricultural landscapes dominated by cattle in Latin America. In: Montagnini F, Finney C (eds) Restoring degraded landscapes with native species in Latin America. Nova Science, New York, pp 197–219

    Google Scholar 

  • Ilany T, Ashton M, Montagnini F, Martinez C (2010) Using agroforestry to improve soil fertility: effects of intercrop** on Ilex paraguariensis (yerba mate) plantations with Araucaria angustifolia. Agrofor Syst 80(3):399–409

    Google Scholar 

  • Jarrett C, Cummins I, Logan-Hines E (2017) Adapting indigenous agroforestry systems for integrative landscape management and sustainable supply chain development in Napo, Ecuador. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry, vol 12. Springer, Cham, pp 283–309

    Google Scholar 

  • Kumar BM, Nair PKR (eds) (2006) Tropical homegardens: a time-tested example of sustainable agroforestry, Advances in agroforestry, vol 3. Springer Science, Dordrecht, 377 p

    Google Scholar 

  • Laurance WF (2008) Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol Conserv 141(7):1731–1744

    Google Scholar 

  • Logan-Hines E, Dueñas J, Cerda L, Stimola M (2015) Manejo y comercialización actual de un cultivo ancestral: el caso de la guayusa, Ilex guayusa Loes., en la Amazonia ecuatoriana. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas agroforestales: funciones productivas, socioeconómicas y ambientales. Serie técnica informe técnico No. 402, CATIE, Turrialba, Costa Rica, Editorial CIPAV, Cali, pp 179–201

    Google Scholar 

  • Lok R, Wieman A, Kass D (1998) Influencia de las características del sitio y el acceso al agua en huertos de la Península de Nicoya, Costa Rica. In: Lok R (ed) Huertos caseros tradicionales de América Central: características, beneficios e importancia, desde un enfoque multidisciplinario. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Turrialba, Costa Rica, pp 29–59

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of Island biogeography. Princeton University Press, Princeton, 203 p

    Google Scholar 

  • Marlay S (2015) Evaluación del potencial de los proyectos agroforestales para lograr beneficios ambientales y socioeconómicos en zonas rurales de Haití. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas agroforestales: funciones productivas, socioeconómicas y ambientales. Serie técnica informe técnico No. 402, CATIE, Turrialba, Costa Rica. Editorial CIPAV, Cali, pp 203–229

    Google Scholar 

  • Mas AH, Dietsch T (2003) An index of management intensity for coffee agroecosystems to evaluate butterfly species richness. Ecol Appl 13(5):1491–1501

    Google Scholar 

  • Moguel P, Toledo V (1999) Biodiversity conservation in traditional coffee systems of Mexico. Conserv Biol 13(1):11–21

    Google Scholar 

  • Montagnini F (2006) Homegardens of Mesoamerica: biodiversity, food security, and nutrient management. In: Kumar BM, Nair PKR (eds) Tropical homegardens: a time-tested example of sustainable agroforestry, Advances in agroforestry, vol 3. Springer Science, Dordrecht, pp 61–84

    Google Scholar 

  • Montagnini F (2017a) Introduction. Challenges for agroforestry in the new millennium. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry, vol 12. Springer, Cham, pp 3–10

    Google Scholar 

  • Montagnini F (2017b) Conclusions: lessons learned and pending challenges. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry, vol 12. Springer, Cham, pp 479–494

    Google Scholar 

  • Montagnini F, Berg KE (2019) Feeding the world, pp 98–100 In: Carver F, Gossington H, Manuel C (eds) Sustainable development goals. Transforming our world. Witan Media Ltd, Painswick, United Nations Association – UK, London, 124 p. https://www.sustainablegoals.org.uk/feeding-the-world/

  • Montagnini F, Finney C (2011) Payments for environmental services in Latin America as a tool for restoration and rural development. Ambio 40:285–297

    Google Scholar 

  • Montagnini F, Metzel R (2015) Biodiversidad, manejo de nutrientes y seguridad alimentaria en huertos caseros mesoamericanos. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas agroforestales: funciones productivas, socioeconómicas y ambientales. Serie técnica informe técnico No. 402, CATIE, Turrialba, Costa Rica, Editorial CIPAV, Cali, pp 381–403

    Google Scholar 

  • Montagnini F, Metzel R (2017) The contribution of agroforestry to sustainable development goal 2: end hunger, achieve food security and improved nutrition, and promote sustainable agriculture. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry, vol 12. Springer, Cham, pp 11–45

    Google Scholar 

  • Montagnini F, Eibl B, Barth SR (2011) Organic yerba mate: an environmentally, socially and financially suitable agroforestry system. Bois et Forets des Tropiques 308:59–74. https://drflorenciamontagnini.wordpress.com/organic-yerba-mate-an-environmentally-socially-and-financially-suitable-agroforestry-system/

    Google Scholar 

  • Montagnini F, Ibrahim M, Murgueitio Restrepo E (2013) Silvopastoral systems and mitigation of climate change in Latin America. Bois et Forets des Tropiques 316(2):3–16

    Google Scholar 

  • Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) (2015) Sistemas agroforestales: funciones productivas, socioeconómicas y ambientales. Serie técnica informe técnico No. 402, CATIE, Turrialba, Costa Rica, Editorial CIPAV, Cali, 454 p

    Google Scholar 

  • Montagnini F, Levin B, Berg KE (2020) Biodiversity Islands. Strategies for conservation in human dominated environments. In: Montagnini F (ed) Biodiversity islands: strategies for conservation in human dominated environments. Springer, Cham (in press)

    Google Scholar 

  • Montoya-Molina S, Giraldo-Echeverri C, Montoya-Lerma J, Chará J, Escobar F, Calle Z (2016) Land sharing vs land sparing in the dry Caribbean lowlands: a dung beetles’ perspective. Appl Soil Ecol 98:204–212

    Google Scholar 

  • Múnera E, Bock BC, Bolívar Vergara DM, Botero Botero JA (2009) Composición y estructura de la avifauna en diferentes hábitats en el Departamento de Córdoba, Colombia. In: Murgueitio E, Cuartas C, Naranjo J (eds) Ganadería del futuro: Investigación para el desarrollo, 2nd edn. Fundación CIPAV, Cali, pp 206–225

    Google Scholar 

  • Murgueitio E, Cuartas C, Naranjo J (eds) (2009) Ganadería del futuro: Investigación para el desarrollo. 2da Ed. Fundación CIPAV (Centro para la Investigación en Sistemas Silvopastoriles de Producción Agropecuaria), Cali, Colombia, p 490

    Google Scholar 

  • Murgueitio E, Calle Z, Uribe F, Calle A, Solorio B (2011) Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For Ecol Manag 261(10):1654–1663

    Google Scholar 

  • Murgueitio E, Flórez MX, Calle Z, Chará J, Barahona R, Molina CH, Uribe F (2015) Productividad en Sistemas silvopastoriles intensivos en América Latina In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas agroforestales: funciones productivas, socioeconómicas y ambientales. Serie Técnica, Informe Técnico 402, CATIE, Turrialba, Costa Rica, Editorial CIPAV, Cali, pp 59–104

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca G, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:858–863

    Google Scholar 

  • Nair PKR, Garrity DP (eds) (2012) Agroforestry: the future of global land use, Advances in agroforestry, vol 9. Springer, New York

    Google Scholar 

  • Nair PKR, Kumar BM (2006) Introduction. In: Kumar BM, Nair PKR (eds) Tropical homegardens: a time-tested example of sustainable agroforestry, Advances in agroforestry, vol 3. Springer Science, Dordrecht, pp 1–10

    Google Scholar 

  • Noble IR, Dirzo R (1997) Forests as human-dominated ecosystems. Science 277:522–525

    CAS  Google Scholar 

  • Pepper LG, De Freitas Navegantes Alves L (2017) Small-scale Açaí in the global market: adding value to ensure sustained income for forest farmers in the Amazon Estuary. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry, vol 12. Springer, Cham, pp 211–234

    Google Scholar 

  • Perfecto I, Mas A, Dietsch T, Vandermeer J (2003) Conservation of biodiversity in coffee agroecosystems: a tri-taxa comparison in Southern Mexico. Biodivers Conserv 12:1239–1252

    Google Scholar 

  • Perfecto I, Armbrecht I, Philpott SM, Soto-Pinto L, Dietsch TV (2007) Shaded coffee and the stability of rainforest margins in northern Latin America. In: Tscharntke T, Leuschner C, Zeller M, Guhardja E, Bidin A (eds) The stability of tropical rainforest margins, linking ecological, economic and social constraints of land use and conservation. Springer, Berlin, pp 225–261

    Google Scholar 

  • Peters CM (2018) Managing the wild. Stories of people and plants and tropical forests. Yale University Press, New Haven, 208 p

    Google Scholar 

  • Peyre A, Guidal A, Wiersum KF, Bongers F (2006) Homegardens dynamics in Kerala, India. In: Kumar BM, Nair PKR (eds) Tropical homegardens: a time-tested example of sustainable agroforestry, Advances in agroforestry, vol 3. Springer Science, Dordrecht, pp 87–104

    Google Scholar 

  • Pezo D, Ibrahim M (1999) Sistemas Silvopastoriles, 2nd edn. Proyecto Agroforestal CATIE/GTZ, Módulo de Enseñanza Agroforestal No. 2. CATIE, Turrialba, Costa Rica. 275 p

    Google Scholar 

  • Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333(6047):1289–1291

    CAS  Google Scholar 

  • Rapidel B, Allinne C, Cerdán C, Meylan L, Virginio Filho E, Avelino J (2015) Efectos ecológicos y productivos del asocio de árboles de sombra con café en sistemas agroforestales. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas agroforestales: funciones productivas, socioeconómicas y ambientales. Serie técnica informe técnico No. 402, CATIE, Turrialba, Costa Rica, Editorial CIPAV, Cali, pp 5–19

    Google Scholar 

  • Redford KH, Padoch C (1992) Conservation of neotropical forests. Working from traditional resource use. Columbia University Press, New York, 475 pp

    Google Scholar 

  • Redondo Brenes A, Montagnini F (2010) Contribution of homegardens, silvopastoral systems, and other human-dominated land-use types to the avian diversity of a biological corridor in Costa Rica. In: Kellimore LR (ed) Handbook on agroforestry: management practices and environmental impact. Nova Science, New York, pp 185–224

    Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Google Scholar 

  • Rice RA, Greenberg R (2004) Silvopastoral systems: ecological and socioeconomic benefits and migratory bird conservation. In: Schroth G, da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac MN (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, DC, pp 453–472

    Google Scholar 

  • Rivera L, Armbrecht I, Calle Z (2013) Silvopastoral systems and ant diversity conservation in a cattle-dominated landscape of the Colombian Andes. Agric Ecosyst Environ 181:188–194

    Google Scholar 

  • Rocha P, Niella F, Keller H, Montagnini F, Metzel R, Eibl B, Kornel J, Romero F, López L, Araujo J, Barquinero J (2017) Ecological indigenous (EIK) and scientific (ESK) knowledge integration as tool for sustainable development in indigenous communities. Experience in Misiones, Argentina. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry, vol 12. Springer, Cham, pp 235–260

    Google Scholar 

  • Rolim SG, Chiarello AG (2004) Slow death of Atlantic forest trees in cocoa agroforestry in southeastern Brazil. Biodivers Conserv 13:2679–2694

    Google Scholar 

  • Rosales M, Sáenz J C (2007) Uso de coberturas de vegetación por tropas de monos congos (Alouatta palliata) y carablanca (Cebus capucinus) en un agropaisaje y percepciones de finqueros con respecto a la conservación de los primates en Esparza, Costa Rica. In: III Congreso Iberoamericano Sobre Desarrollo y Ambiente (CISDA), Heredia, Costa Rica

    Google Scholar 

  • Roshetko JM, Purwanto E, Moeliono M, Widayati A, Purnomosidhi P, Mahrizal WD, Perdana A, Martini E, Gaol A, Paramita E, Dahlia L, Suyanto KN, Manurung G, Yuliani L, Rohadi D, Manalu P, Umar A, Millang S (2016) Agroforestry and forestry in Sulawesi: linking knowledge with action. Annual Progress Report Year 5 (April 2015 – March 2016). World Agroforestry Centre (ICRAF) Southeast Asia Regional Program, Center for International Forestry Research; Bogor, Indonesia, Operation Wallacea Trust, Bogor, Indonesia, Faculty of Forestry, Hasanuddin University, Makassar, Indonesia, 137 p

    Google Scholar 

  • Rossi E, Montagnini F, de Melo E (2011) Effects of management practices on coffee productivity and herbaceous species diversity in agroforestry systems in Costa Rica. In: Montagnini F, Francesconi W, Rossi E (eds) Agroforestry as a tool for landscape restoration. Nova Science, New York, pp 115–132

    Google Scholar 

  • Sáenz JC, Villatoro F, Ibrahim M, Fajardo D, Pérez M (2007) Relación entre las comunidades de aves y la vegetación en agropaisajes dominados por la ganadería en Costa Rica, Nicaragua y Colombia. Agroforestería en las Américas 45:37–48

    Google Scholar 

  • Sánchez-Clavijo LM, Botero JE, Espinosa R (2008) Assessing the value of shade coffee for bird conservation in the Colombian Andes at a local, regional, and national level. Fourth International Partners in Flight Conference: Tundra to Tropics. McAllen, TX, 13–16 Feb 2008, pp 148–157

    Google Scholar 

  • Schulz J (2011) Imitating natural ecosystems through successional agroforestry for the regeneration of degraded lands - a case study of smallholder agriculture in northeastern Brazil. In: Montagnini F, Francesconi W, Rossi E (eds) Agroforestry as a tool for landscape restoration. Nova Science, New York, pp 3–17

    Google Scholar 

  • Somarriba E, Harvey CA, Samper M, Anthony F, Gonzalez J, Staver C, Rice RA (2004) Biodiversity conservation in Neotropical coffee (Coffea Arabica) plantations. In: Schroth G, da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac MN (eds) Agroforestry and Biodiversity Conservation in Tropical Landscapes. Island Press, Washington, DC, pp 198–226

    Google Scholar 

  • Somarriba E, Carreño-Rocabado G, Amores F, Caicedo W, Oblitas Gillés De Pélichy S, Cerda R, Ordóñez JC (2017) Trees on farms for livelihoods, conservation of biodiversity and carbon storage: evidence from Nicaragua on this “invisible” resource. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in Agroforestry, vol 12. Springer, Cham, pp 369–393

    Google Scholar 

  • SOS Mata Atlântica and INPE (2014) Atlas dos remanescentes florestais da Mata Atlântica: período 2012–2013. Instituto Nacional de Pesquisas Espaciais. http://www.inpe.br/https://www.sosma.org.br/

  • Tamashiro S (2018) Corredores verdes reducen impactos del desmonte. Retrieved 17 October 2018, from http://curi.nearural.com/ampliar.php?mkt_hm=6&id=40360&utm_source=email_marketing&utm_admin=8097&utm_medium=email&utm_campaign=#.W4l9KnmQBck.email

  • Teodoro AV, Munoz A, Tscharntke T (2011) Early succession arthropod community changes on experimental passion fruit plant patches along a land-use gradient in Ecuador. Agric Ecosyst Environ 140(1–2):14–19

    Google Scholar 

  • Terrones Rincón T, del Rosario L, Hernández Martínez MA, Ríos Ruiz SA, Martínez Ayala C (2011) Non-wood products from native multipurpose trees from agroforestry homegardens in the semiarid Mexican Plateau. In: Montagnini F, Francesconi W, Rossi E (eds) Agroforestry as a tool for landscape restoration. Nova Science, New York, pp 85–97

    Google Scholar 

  • Tjørve E (2010) How to resolve the SLOSS debate: lessons from species-diversity models. J Theor Biol 264(2):604–612

    Google Scholar 

  • Tobar-López DE, Ibrahim M, Casasola F (2007) Diversidad de mariposas en un paisaje agropecuario del Pacífico central de Costa Rica. Agroforestería en las Américas 45:58–65

    Google Scholar 

  • Tscharntke T, Cagan H, Sekercioglu TV, Dietsch NS, Sodhi PH, Tylianakis JM (2008) Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology 89(4):944–951

    Google Scholar 

  • Vieira D, Fellows B, Moreira N, Figueiredo I, Pereira A, de Oliveira E (2014) Agricultores que plantam árvores no Cerrado, WWF Brasil, Brasília. https://www.wwf.org.br/

  • Virginio Filho E, Casanoves F, Haggar J, Staver C, Soto G, Avelino J, Tapia A, Merlo M, Salgado J, Noponen M, Perdomo Y, Vásquez A (2015) La productividad útil, la materia orgánica y el suelo en los primeros 10 años de edad en sistemas de producción de café a pleno sol y bajo varios tipos de sombra y niveles de insumos orgánicos y convencionales en Costa Rica. In: Montagnini F, Somarriba E, Murgueitio E, Fassola H, Eibl B (eds) Sistemas agroforestales: funciones productivas, socioeconómicas y ambientales. Serie técnica informe técnico No. 402, CATIE, Turrialba, Costa Rica, Editorial CIPAV, Cali, pp 131–151

    Google Scholar 

  • Wezel A, Bender S (2003) Plant species diversity of homegardens of Cuba and its significance for household food supply. Agrofor Syst 57:39–49

    Google Scholar 

  • Wezel A, Ohl J (2006) Homegarden plant diversity in relation to remoteness from urban centers: a case study from the Peruvian Amazon. In: Kumar BM, Nair PKR (eds) Tropical homegardens: a time-tested example of sustainable agroforestry, Advances in agroforestry, vol 3. Springer Science, Dordrecht, pp 159–184

    Google Scholar 

  • Young K (2017) Mimicking nature: a review of successional agroforestry systems as an analogue to natural regeneration of secondary forest stands. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry, vol 12. Springer, Cham, pp 179–209

    Google Scholar 

Download references

Acknowledgments

Thanks to Brett Levin (Yale University School of Forestry and Environmental Studies) who provided valuable assistance in the preparation of this chapter and to Kjell Berg for his continued input and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florencia Montagnini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montagnini, F. (2020). The Contribution of Agroforestry to Restoration and Conservation: Biodiversity Islands in Degraded Landscapes. In: Dagar, J.C., Gupta, S.R., Teketay, D. (eds) Agroforestry for Degraded Landscapes. Springer, Singapore. https://doi.org/10.1007/978-981-15-4136-0_15

Download citation

Publish with us

Policies and ethics

Navigation