Bioremediation Approaches for Treatment of Pulp and Paper Industry Wastewater: Recent Advances and Challenges

  • Chapter
  • First Online:
Microbial Bioremediation & Biodegradation

Abstract

Pulp and papermaking industry is a large consumer of fresh water and also an important source of dark-brown-colored wastewater, generated during various stages of pul** and papermaking activities. The colored wastewater discharged from pulp and paper industry even after secondary treatment remains toxic and complex in nature and retains high amount of lignin, lignin residues, resins, acids, chlorinated phenols, and various persistent organic pollutants (POPs) including the adsorbable organic halides (AOXs; halogenated or organochlorine). The existing various conventional methods along with integrated processes (aerated lagoons and activated sludge plants) cannot efficiently treat pulp and paper industry wastewater due to its complex and recalcitrant nature. Hence, the discharged partially treated/or untreated wastewater are contributing to deteriorating water quality due to increasing biological oxygen deman and chemical oxygen demand and decrease of dissolved oxygen.

In a terrestrial ecosystem, the wastewater irrigated soil showed decrease of moisture content and increase of pH and toxic heavy metals content. To tackle this problem associated with hazardous waste disposal, the existing pulp and paper industry wastewater treatment process needs to be improved with better treatment outcomes. Although, several physicochemical methods are available for the treatment of such wastewater, they are more energy intensive and suffer from residual effect. In addition, they are very expensive, inefficient, and produce a huge amount of toxic sludge which is difficult to handle and also produces volatile organic compounds on burning. To combat these challenges, biological treatment using bacteria, fungi, yeasts, and algae has evolved as a preferred means to treat and reduce the toxic organic compounds loaded in generated pulp and paper industry wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelaziz OY, Brink DP, Prothmann J, Ravi K, Sun M, Garcia-Hidalgo J, Sandahl M, Hulteberg CP, Turner C, Liden G, Gorwa-Grauslund MF (2016) Biological valorization of low molecular weight lignin. Biotechnol Adv 34(8):1318–1346

    CAS  Google Scholar 

  • Abhishek A, Dwivedi A, Tandan N, Kumar U (2017) Comparative bacterial degradation and detoxification of model and Kraft lignin from pulp paper wastewater and its metabolites. Appl Water Sci 7(2):757–767

    CAS  Google Scholar 

  • Abira MA, van Bruggen JJA, Denny P (2005) Potential of a tropical subsurface constructed wetland to remove phenol from pre-treated pulp and paper mill wastewater. Water Sci Technol 51:173–176

    CAS  Google Scholar 

  • Ahmad M, Taylor CR, Pink D, Burton K, Eastwood D, Bending GD, Bugg TD (2010) Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Mol BioSyst 6(5):815–821

    CAS  Google Scholar 

  • Ali M, Sreekrishnan TR (2001) Aquatic toxicity from pulp and paper mill effluents: a review. Adv Environ Res 5:175–196

    CAS  Google Scholar 

  • Alkorta I, Hernandez-Allica J, Becerril J, Amezaga I, Albizu I, Garbiscu C (2004) Recent finding on the phytoremediation of soil contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biotechnol 3:71–90

    CAS  Google Scholar 

  • Apiwattanapiwat W, Siriacha P, Vaithanomsat P (2006) Screening of fungi for decolorization of wastewater from pulp and paper industry. Kasetsart Journal (Nat Sci) 40:215–221

    Google Scholar 

  • Archana PI, Mahadevan A (2002) Lignin degradation by bacteria. Prog Ind Microbiol 36:311–330

    Google Scholar 

  • Archibald F, Paice MG, Jurasek L (1990) Decolorization of Kraft bleachery effluent chromophores by Coriolus (Trametes) versicolor. Enzym Microb Technol 12:846–853

    CAS  Google Scholar 

  • Arica MY, Altintas B, Bayramoglu G (2009) Immobilization of laccase onto spacer–arm attached non–porous poly (GMA/EGDMA) beads: application for textile dye degradation. Bioresour Technol 100:665–669

    CAS  Google Scholar 

  • Arivoli A, Mohanraj R, Seenivasan R (2015) Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater. Environ Sci Pollut Res 22:13336–13343

    CAS  Google Scholar 

  • Bajpai P, Mehna A, Bajpai PK (1993) Decolorization of Kraft bleach plant effluent with the white rot fungus Trametes versicolor. Process Biochem 28:377–384384

    CAS  Google Scholar 

  • Baker AJM (1981) Accumulator and excluder-strategies in the response of plant to heavy metals. J Plant Nutr 3:643–654

    CAS  Google Scholar 

  • Beauchamp CJ, Simao-Beaunoir A, Beaulieu C, Chalifour F (2006) Confirmation of E. coli among other thermotolerant coliform bacteria in paper mill effluents, wood chips screening rejects and paper sludges. Water Res 40:2452–2462

    CAS  Google Scholar 

  • Becker J, Wittmann C (2019) A field of dreams: lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol Adv. S0734-9750(19)30035-7

    Google Scholar 

  • Bérubé PR, Hall ER (2000) Effects of elevated operating temperatures on methanol removal kinetics from synthetic Kraft pulp mill condensate using a membrane bioreactor. Water Res 34(18):4359–4366

    Google Scholar 

  • Bhat SA, Singh J, Vig AP (2017) Instrumental characterization of organic wastes for evaluation of vermicompost maturity. J Anal Sci Technol 8:2

    Google Scholar 

  • Bhat SA, Singh S, Singh J, Kumar S, Bhawana VAP (2018) Bioremediation and detoxification of industrial wastes by earthworms: vermicompost as powerful crop nutrient in sustainable agriculture. Bioresour Technol 252:172–179

    CAS  Google Scholar 

  • Birjandi N, Younesi H, Bahramifar N (2016) Treatment of wastewater effluents from paper-recycling plants by coagulation process and optimization of treatment conditions with response surface methodology. Appl Water Sci 6:339–348

    CAS  Google Scholar 

  • Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28:1883–1896

    CAS  Google Scholar 

  • Chandra R, Abhishek A (2011) Bacterial decolorization of black liquor in axenic and mixed condition and characterization of metabolites. Biodegradation 22:603–611

    CAS  Google Scholar 

  • Chandra R, Kumar V (2015a) Mechanism of wetland plant rhizosphere bacteria for bioremediation of pollutants in an aquatic ecosystem. In: Chandra R (ed) Advances in Biodegradation and Bioremediation of Industrial Waste. CRC Press, Boca Raton, pp 329–379

    Google Scholar 

  • Chandra R, Kumar V (2015b) Biotransformation and biodegradation of organophosphates and organohalides. In: Chandra R (ed) Environmental Waste Management. CRC Press, pp 475–524

    Google Scholar 

  • Chandra R, Kumar V (2017a) Detection of androgenic-mutagenic compounds and potential autochthonous bacterial communities during in situ bioremediation of post methanated distillery sludge. Front Microbiol 8:887

    Google Scholar 

  • Chandra R, Kumar V (2017b) Detection of Bacillus and Stenotrophomonas species growing in an organic acid and endocrine-disrupting chemicals rich environment of distillery spent wash and its phytotoxicity. Environ Monit Assess 189:26

    Google Scholar 

  • Chandra R, Kumar V (2017c) Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilized distillery sludge as a prospective tool for in-situ phytoremediation of industrial waste. Environ Sci Pollut Res 24:2605–2619

    CAS  Google Scholar 

  • Chandra R, Kumar V (2018) Phytoremediation: a green sustainable technology for industrial waste management. In: Chandra R, Dubey NK, Kumar V (eds) Phytoremediation of environmental pollutants. CRC Press, Boca Raton

    Google Scholar 

  • Chandra R, Singh R (2012) Decolourisation and detoxification of rayon grade pulp paper mill effluent by mixed bacterial culture isolated from pulp paper mill effluent polluted site. Biochem Eng J 61:49–58

    CAS  Google Scholar 

  • Chandra R, Singh S, Raj A (2006) Seasonal bacteriological analysis of gola river water contaminated with pulp paper mill waste in Uttaranchal, India. Environ Monit Assess 118:393–406

    CAS  Google Scholar 

  • Chandra R, Abhishek A, Sankhwar M (2011a) Bacterial decolorization and detoxification of black liquor from rayon grade pulp manufacturing paper industry and detection of their metabolic products. Bioresour Technol 102:6429–6436

    CAS  Google Scholar 

  • Chandra R, Singh R, Yadav S (2011b) Effect of bacterial inoculum ratio in mixed culture for decolourization and detoxification of pulp paper mill effluent. J Chem Technol Biotechnol 87:436–444

    Google Scholar 

  • Chandra R, Saxena G, Kumar V (2015a) Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste. CRC Press, Boca Raton, pp 1–29

    Google Scholar 

  • Chandra R, Kumar V, Yadav S (2015b) Microbial degradation of lignocellulosic waste and its metabolic products. In: Chandra R (ed) Environmental waste management. CRC Press, pp 249–298

    Google Scholar 

  • Chandra R, Kumar V, Yadav S (2017a) Extremophilic ligninolytic enzymes. In: Sani R, Krishnaraj R (eds) Extremophilic enzymatic processing of lignocellulosic feedstocks to bioenergy. Springer, Cham

    Google Scholar 

  • Chandra R, Yadav S, Yadav S (2017b) Phytoextraction potential of heavy metals by native wetland plants growing on chlorolignin containing sludge of pulp and paper industry. Ecol Eng 98:134–145

    Google Scholar 

  • Chandra R, Kumar V, Tripathi S (2018a) Evaluation of molasses-melanoidin decolourisation by potential bacterial consortium discharged in distillery effluent. 3 Biotech 8:187

    Google Scholar 

  • Chandra R, Kumar V, Tripathi S, Sharma P (2018b) Heavy metal phytoextraction potential of native weeds and grasses from endocrine-disrupting chemicals rich complex distillery sludge and their histological observations during in situ phytoremediation. Ecol Eng 111:143–156

    Google Scholar 

  • Chandra R, Dubey NK, Kumar V (2018c) Phytoremediation of environmental pollutants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Chandra R, Kumar V, Singh K (2018d) Hyperaccumulator versus nonhyperaccumulator plants for environmental waste management. In: Chandra R, Dubey NK, Kumar V (eds) Phytoremediation of environmental pollutants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Chandra R, Kumar V, Tripathi S, Sharma P (2018e) Phytoremediation of industrial pollutants and life cycle assessment. In: Chandra R, Dubey NK, Kumar V (eds) Phytoremediation of environmental pollutants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Chauhan N, Thakur IS (2002) Treatment of pulp and paper mill effluent by Pseudomonas fluorescens in fixed film bioreactor. Pollut Res 4(4):429–434

    Google Scholar 

  • Chedchant J, Petchoy O, Vaithanomsat P, Apiwatanapiwat W, Kreetachat T, Chantranurak S (2009) Decolorization of lignin containing effluent by white–rot fungus Datronia sp. KAPI0039. In: Proceedings of the 47th Kasetsart University Annual Conference, Bangkok

    Google Scholar 

  • Chen Z, Wan CX (2017) Biological valorization strategies for converting lignin into fuels and chemicals. Renew Sust Energ Rev 73:610–621

    CAS  Google Scholar 

  • Chen YH, Chai LY, Zhu YH, Yang ZH, Zheng Y, Zhang H (2012a) Biodegradation of Kraft lignin by a bacterial strain Comamonas sp. B-9 isolated from eroded bamboo slips. J Appl Microbiol 125:900–906

    Google Scholar 

  • Chen J, Zhan P, Koopman B, Fang G, Shi Y (2012b) Bioaugmentation with Gordonia strain JW8 in treatment of pulp and paper wastewater. Clean Technol Environ Policy 14:899–904

    CAS  Google Scholar 

  • Chen Y, Chai L, Tang C, Yang Z, Zheng Y, Shi Y, Zhang H et al (2012c) Kraft lignin biodegradation by Novosphingobium sp. B-7 and analysis of the degradation process. Bioresour Technol 123:682–685

    CAS  Google Scholar 

  • Choudhary AK, Kumar S, Sharma C (2010) Removal of chlorinated resin and fatty acids from paper mill wastewater through constructed wetland. World Academy of Science. Eng Technol 80:67–71

    Google Scholar 

  • Chuphal Y, Kumar V, Thakur IS (2005) Biodegradation and decolorization of pulp and paper mill effluent by anaerobic and aerobic microorganisms in a sequential bioreactor. World J Microb Biot 21:1439–1445

    CAS  Google Scholar 

  • Clark T, Mitchell C, Donnison A (1992) Bacteriological water quality of pulp and paper mill effluent: the problem of Klebsiella pneumoniae. In Proceedings of the 1992 TAPPI International Environmental Conference, pp 171–180

    Google Scholar 

  • Costa S, Dedola DG, Pellizzari S, Blo R, Rugiero I, Pedrini P, Tamburini E (2017) Lignin biodegradation in pulp-and-paper mill wastewater by selected white rot fungi water. Water 9(12):935

    Google Scholar 

  • Costigan SL, Werner J, Ouellet JD, Hill LG, Law RD (2012) Expression profiling and gene ontology analysis in fathead minnow (Pimephales promelas) liver following exposure to pulp and paper mill effluents. Aquat Toxicol (122–123):44–55

    Google Scholar 

  • D’Souza DT, Tiwari R, Sah AK, Raghukumar C (2006) Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzym Microb Technol 38:504–511

    Google Scholar 

  • Da Re V, Papinutti L (2011) Black liquor decolorization by selected white-rot fungi. Appl Biochem Biotechnol 165:406–415

    Google Scholar 

  • Das S, Mazumdar K (2016) Phytoremediation potential of a novel fern, Salvinia cucullata, Roxb. Ex Bory, to pulp and paper mill effluent: physiological and anatomical response. Chemosphere 163:62–72

    CAS  Google Scholar 

  • Denslow ND, Kocerha J, Sepúlveda MS, Gross T, Holm SE (2004) Gene expression fingerprints of largemouth bass (Micropterus salmoides) exposed to pulp and paper mill effluents. Mutat Res 552(1–2):19–34

    CAS  Google Scholar 

  • Devkumari MS, Selvaseelan DA (2008) Impact of paper mill treated effluent irrigation and solid wastes amendment on the productivity of Cumbu napier (CO-3) – a field study. Asian J Exp Sci 22(3):285–293

    Google Scholar 

  • Dias JCT, Rezende RP, Silva CM, Linardi VR (2005) Biological treatment of Kraft pulp mill foul condensates at high temperatures using a membrane bioreactor. Process Biochem 40(3–4):1125–1129

    CAS  Google Scholar 

  • Dileká FB, Taplamacioglu HM, Tarlan E (1999) Colour and AOX removal from pul** effluents by algae. Appl Microbiol Biotechnol 52:585–591

    Google Scholar 

  • van Driessel B, Christov L (2001) Decolorization of bleach plant effluent by mucoralean and white-rot fungi in a rotating biological contactor reactor. J Biosci Bioeng 92(3):271–276

    CAS  Google Scholar 

  • Duan J, Liang J, Wang Y, W D, Wang D (2016a) Kraft lignin biodegradation by Dysgonomonas sp. WJDL-Y1, a new anaerobic bacterial strain isolated from sludge of a pulp and paper mill. J Microbiol Biotechnol 26(10):1765–1773

    CAS  Google Scholar 

  • Duan J, Huo X, Du WJ, Liang JD, Wang DQ, Yang SC (2016b) Biodegradation of Kraft lignin by a newly isolated anaerobic bacterial strain, Acetoanaerobium sp. WJDL-Y2. Lett Appl Microbiol 62:55–56

    CAS  Google Scholar 

  • Dudášová H, Lukáčová L, Murínová S, Puškárová A, Pangallo D, Dercová K (2014) Bacterial strains isolated from PCB-contaminated sediments and their use for bioaugmentation strategy in microcosms. J Basic Microbiol 54(4):253–260

    Google Scholar 

  • Emeka CI, Ihediohamma EE, Linus N, Ndubuisi UC, Ebele AG (2011) Physicochemical dynamics of the impact of paper mill effluents on Owerrinta river, eastern Nigeria. J Env Chem Ecotox 3(11):298–303

    Google Scholar 

  • Erkan HS, Engin GO (2017) The investigation of paper mill industry wastewater treatment and activated sludge properties in a submerged membrane bioreactor. Water Sci Technol 76(7–8):1715–1725

    CAS  Google Scholar 

  • Esposito E, Canhos VP, Nelson D (1991) Screening of lignin-degrading fungi for removal of color from Kraft mill wastewater with no additional extra carbon-source. Biotechnol Lett 13:571–576

    CAS  Google Scholar 

  • Ferrer I, Dezotti M, Durdn N, de Qufmica F (1991) Decolorization of Kraft effluent by free and immobilized lignin peroxidases and horseradish peroxidase. Biotechnol Lett 13(3):577–532

    CAS  Google Scholar 

  • Fulthorpe RR, Allen DG (1995) A comparison of organochlorine removal from bleached kraft pulp and paper-mill effluents by dehalogenating Pseudomonas, Ancylobacter and Methylobacterium strains. Appl Microbiol Biotechnol 42:782–789

    CAS  Google Scholar 

  • Galil NI, Sheindorf C, Stahl N, Tenenbaum A, Levinsky A (2003) Membrane bioreactors for final treatment of wastewater. Water Sci Technol 48(8):103–110

    CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77(3):229–236

    CAS  Google Scholar 

  • Garg SK, Modi DR (1999) Decolorization of pulp-paper mill effluents by white-rot fungi. Crit Rev Biotechnol 19(2):85–112

    CAS  Google Scholar 

  • Gauthier F, Archibald F (2001) The ecology of “fecal indicator” bacteria commonly found in pulp and paper mill water systems. Water Resour 35(9):2207–2218

    CAS  Google Scholar 

  • Gaur N, Narasimhulu K, Pydi Setty Y (2018) Extraction of ligninolytic enzymes from novel Klebsiella pneumoniae strains and its application in wastewater treatment. Appl Water Sci 8:111

    Google Scholar 

  • van Ginkel CG, Kester H, Stroo CA, van Haperen AM (1999) Biodegradation of EDTA in pulp and paper mill effluent by activated sludge. Water Sci Technol 40(11–12):259–265

    Google Scholar 

  • Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 242(2):329–341

    CAS  Google Scholar 

  • Gommers K, De Wever H, Brauns E, Peys K (2007) Recalcitrant COD degradation by an integrated system of ozonation and membrane bioreactor. Water Sci Technol 55(12):245–251

    CAS  Google Scholar 

  • Gonder ZB, Arayici S, Barlas H (2012) Treatment of pulp and paper mill wastewater using ultrafiltration process: optimization of the fouling and rejections. Indian Eng Chem Res 51:6184–6195

    CAS  Google Scholar 

  • Guan W, Yin M, He T, **e S (2015) Influence of substrate type on microbial community structure in vertical-flow constructed wetland treating polluted river water. Environ Sci Pollut Res Int 22:16202–16209

    CAS  Google Scholar 

  • Gupta R, Garg VK (2009) Vermiremediation and nutrient recovery of non-recyclable paper waste employing Eisenia fetida. J Hazard Mater 162(1):430–439

    CAS  Google Scholar 

  • Gupta V, Minocha AK, Jain N (2001) Batch and continuous studies on treatment of pulp mill wastewater by Aeromonas formicans. J Chem Technol Biotechnol 76(6):547–552

    CAS  Google Scholar 

  • Hall TJ, Fisher RP, Rodgers JH, Minshall GW, Landis WG, Kovacs TG, Firth BK, Dube MG, Deardorff TL, Borton DL (2009) A long-term, multitrophic level study to assess pulp and paper mill effluent effects on aquatic communities in four us receiving waters: background and status. Integr Environ Assess Manag 5(2):189–198

    CAS  Google Scholar 

  • Hammer DA, Pullin BP, McMurry DK, Lee JW (1993) Testing color removal from pulp mill wastewaters with constructed wetlands. In: Moshiri AG (ed) Constructed wetlands for water pollution improvement. CRC Press/Lewis Publishers, Boca Raton, Florida, pp 449–452

    Google Scholar 

  • Haq I, Kumar S, Kumari V, Singh SK, Raj A (2016) Evaluation of bioremediation potentiality of ligninolytic Serratia liquefaciens for detoxification of pulp and paper mill effluent. J Hazard Mater 305:190–199

    CAS  Google Scholar 

  • Haq I, Kumar S, Raj A, Lohani M, Satyanarayana GNV (2017) Genotoxicity assessment of pulp and paper mill effluent before and after bacterial degradation using Allium cepa test. Chemosphere 169:642–650

    CAS  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Hofrichter M, Steinbuchel A (eds) Lignin, humic substances and coal. Wiley-VCH, Weinheim, pp 129–180

    Google Scholar 

  • Hatano K, Frederick DJ, Moore JA (1994) Microbial ecology of constructed wetland used for treating pulp mill wastewater. Water Sci Technol 29(4):233–239

    CAS  Google Scholar 

  • Hermosilla D, Merayo N, Gasco A, Blanco A (2015) The application of advanced oxidation technologies to the treatment of effluents from pulp and paper industry: a review. Environ Sci Pollut Res 22:168–191

    CAS  Google Scholar 

  • Hewitt LM, Kovacs TG, Dube MG, MacLatchy DL, Martel PH, McMaster ME, Paice MG, Parrott JL, van Den Heuvel MR, van Der Kraak GJ (2008) Altered reproduction in fish exposed to pulp and paper mill effluents: roles of individual compounds and mill operating conditions. Environ Toxicol Chem 27(3):682–697

    CAS  Google Scholar 

  • Hofrichter M (2002) A review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Tech 30:454–466

    CAS  Google Scholar 

  • Hooda R, Bhardwaj NK, Singh P (2015) Screening and identification of ligninolytic bacteria for the treatment of pulp and paper mill effluent. Water Air Soil Poll 226:305

    Google Scholar 

  • Hou LP, Yang Y, Shu H, Ying GG, Zhao JL, Fang GZ, **n L, Shi WJ, Yao L, Cheng XM (2018) Masculinization and reproductive effects in western mosquito fish (Gambusia affinis) after long-term exposure to androstenedione. Ecotoxicol Environ Saf 147:509–515

    CAS  Google Scholar 

  • Huang XF, Santhanam N, Badri DV, Hunter WJ, Manter DK, Decker SR, Vivanco JM, Reardon KF (2013) Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnol Bioeng 110(6):1616–1626

    CAS  Google Scholar 

  • Huntley BE, Jones AC, Cabelli VJ (1766) Klebsiella densities in waters receiving wood pulp effluents. J Water Pollut Control Fed 48(7):1766–1771

    Google Scholar 

  • Idise OE, Okoko FJ, Ogar O, Egbah A (2012) The effects of solid wood waste discharge on the physico-chemical and microbial characteristics of the Warri river. Afr J Microbiol Res 6(20):4302–4314

    CAS  Google Scholar 

  • Jenkins RL, Wilson EM, Angus RA, Howell WM, Kirk M (2003) Androstenedione and progesterone in the sediment of a river receiving paper mill effluent. Toxicol Sci 73:53–59

    CAS  Google Scholar 

  • Johansson T (2012) Application of membrane bioreactors in the pulp and paper industry. Master’s Thesis, Uppsala University, Environmental and Aquatic Civil Engineering Program.

    Google Scholar 

  • Kadlec RH, Wallace SD (2009) Treatment wetlands, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kang K, Sung J, Kim D (2007) Evaluation of white-rot fungi for biopul** of wood. Mycobiology 35(4):205–209

    Google Scholar 

  • Kannan K, Oblisami G (1990) Decolorization of pulp and paper mill effluent by growth of Aspergillus niger. World J Microbiol Biotechnol 6:114–116

    CAS  Google Scholar 

  • Karrascha B, Parra O, Cid H, Mehrens M, Pacheco P, Urrutia R, Valdovinos C, Zaror C (2006) Effects of pulp and paper mill effluents on the microplankton and microbial self-purification capabilities of the Biobıo River, Chile. Sci Total Environ 359:194–208

    Google Scholar 

  • Kaur A, Singh J, Vig AP, Dhaliwal SS, Rup PJ (2010) Cocomposting with and without Eisenia fetida for conversion of toxic paper mill sludge to a soil conditioner. Bioresour Technol 101(21):8192–8198

    CAS  Google Scholar 

  • Keharia H, Madamwar D (2003) Bioremediation concepts for treatment of dye containing wastewater: a review. Indian J Exp Biol 41:1068–1075

    CAS  Google Scholar 

  • Kirk TK, Tien M, Faison BD (1984) Biochemistry of the oxidation of lignin by Phanerochaete chrysosporium. Biotechnol Adv 2(2):183–199

    CAS  Google Scholar 

  • Kirk TK, Burgess RR, Koning JW (1992) Use of fungi in pul** wood: an overview of biopul** research. In: Leatham GF (ed) Frontiers in industrial mycology. Springer, Boston, pp 99–111

    Google Scholar 

  • Knight RL, Hilleke J, Grayson S (1994) Design and performance of the champion pilot-constructed wetland treatment system. TAPPI J 77:240–245

    CAS  Google Scholar 

  • Kreetachat T, Chaisan O, Vaithanomsat P (2016) Decolorization of pulp and paper mill effluents using wood rotting fungus Fibrodontia sp. RCK783S. Int J Environ Sci Dev 7(5). https://doi.org/10.7763/IJESD.2016.V7.792

  • Kumar V, Chandra R (2018a) Characterisation of manganese peroxidase and laccase producing bacteria capable for degradation of sucrose glutamic acid-maillard products at different nutritional and environmental conditions. World J Microbiol Biotechnol 34:32

    Google Scholar 

  • Kumar V, Chandra R (2018b) Bacterial assisted phytoremediation of industrial waste pollutants and eco-restoration. In: Chandra R, Dubey NK, Kumar V (eds) Phytoremediation of environmental pollutants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kumar V, Chandra R (2020a) Bacterial-assisted phytoextraction mechanism of heavy metals by native hyperaccumulator plants from distillery waste contaminated site for eco-restoration. In: Microbes for sustainable development and bioremediation. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kumar V, Chandra R (2020b) Bioremediation of melanoidins containing distillery waste for environmental safety. In: Saxena G, Bharagava RN (eds) Bioremediation of industrial waste for environmental safety, Microbes and methods for industrial waste management, vol II. Springer, Singapore

    Google Scholar 

  • Kumar V, Chopra AK (2011) Alterations in physico-chemical characteristics of soil after irrigation with paper mill effluent. J Chem Pharm Res 3(6):7–22

    Google Scholar 

  • Kumar V, Chopra AK (2016) Reduction of pollution load of paper mill effluent by phytoremediation technique using water caltrop (Trapa natans L.). Cogent Environ Sci 2(1). https://doi.org/10.1080/23311843.2016.1153216

  • Kumar V, Dhall P, Kumar R, Singh YP, Kumar A (2012) Bioremediation of agro-based pulp mill effluent by microbial consortium comprising autochthonous bacteria. Sci World J:7, 127014

    Google Scholar 

  • Kumar V, Shahi SK, Singh S (2018) Bioremediation: an eco-sustainable approach for restoration of contaminated sites. In: Singh J, Sharma D, Kumar G, Sharma NR (eds) Microbial bioprospecting for sustainable development. Springer

    Google Scholar 

  • Kumar V, Singh J, Kumar P (2019) Heavy metal uptake by water lettuce (Pistia stratiotes L.) from paper mill effluent (PME): experimental and prediction modeling studies. Environ Sci Pollut Res 26(14):14400–14413

    CAS  Google Scholar 

  • Kumari M, Yadav RS, Yadav KD (2002) Secretion of lignin peroxidase by Penicillium citrinum, Fusarium oxysporum and Aspergillus terreus. Indian J Exp Biol 40(7):802–880

    CAS  Google Scholar 

  • Lacorte S, Latorre A, Barcelo D, Rigol A, Malmqvist A, Welander T (2003) Organic compounds in paper mill process waters and effluents. Trends Anal Chem 22(10):725–737

    CAS  Google Scholar 

  • Lafond RA, Ferguson JF (1991) Anaerobic and aerobic biological treatment processes for removal of chlorinated organics from Kraft bleaching wastes. In: Tappi proceeding of the environmental conference. Tappi Press, Atlanta, pp 797–812

    Google Scholar 

  • Lankinen VP, Inkeröinen MM, Pellinen J, Hatakka AI (1991) The onset of lignin-modifying enzymes, decrease of AOX and color removal by white-rot fungi grown on bleach plant effluents. Water Sci Technol 24(3–4):189–198

    CAS  Google Scholar 

  • Larsson L, Andersson T, Forlin L, Hardig J (1988) Physiological disturbances in fish exposed to bleached Kraft mill effluents. Water Sci Technol 20:67–76

    CAS  Google Scholar 

  • Latorre A, Malmqvist A, Lacorte S, Welander T, Barcelo D (2007) Evaluation of the treatment efficiencies of paper mill white waters in terms of organic composition and toxicity. Environ Pollut 147:648–655

    CAS  Google Scholar 

  • Leadbitter D (2009) Some effects of bleached Kraft pulp mill effluents on aquatic organisms – a review. Wetlands 8(3):28–35

    Google Scholar 

  • Lee J, Koh D, Andijani M, Saw SM, Munoz C, Chia SE, Wong ML, Hong CY, Ong CN (2012) Effluents from a pulp and paper mill: a skin and health surveys of children living in upstream and downstream villages. Occup Environ Med 59:373–379

    Google Scholar 

  • Lerner M, Stahl N, Galil NI (2007) Comparative study of MBR and activated sludge in the treatment of paper mill wastewater. Water Sci Technol 55:23–29

    Google Scholar 

  • Lin H, Gao W, Meng F, Liao BQ, Leung KT, Zhao L, Chen J, Hong H (2012) Membrane bioreactors for industrial wastewater treatment: a critical review. Crit Rev Environ Sci Technol 42:677–740

    CAS  Google Scholar 

  • Liss SN, Allen DG (1992) Microbiological study of a bleached Kraft pulp mill aerated lagoon. J Pulp Paper Sci 18(6):216–220

    CAS  Google Scholar 

  • Long SC, Stietz JR, Olstadt J, Hedman CJ, Plummer JD (2012) Characterizing paper mill effluent using indicators and source tracking methods. J Am Water Works Assoc 104(3):E150–E161

    Google Scholar 

  • Mahesh S, Prasad B, Mall ID, Mishra IM (2006) Electrochemical degradation of pulp and paper mill wastewater. Part 1. COD and color removal. Ind Eng Chem Res 45:2830–2839

    CAS  Google Scholar 

  • Mahesh S, Garg KK, Srivastava VC, Mishra IM, Prasad B, Mall ID (2016) Continuous electrocoagulation treatment of pulp and paper mill wastewater: operating cost and sludge study. RSC Adv 6:16223–16233

    CAS  Google Scholar 

  • Maheshwari R, Rani B, Saxena A, Prasad M, Singh U (2012) Analysis of effluents released from recycled paper industry. Science Sage 3(1):82–85

    CAS  Google Scholar 

  • Malaviya P, Rathore VS (2007) Bioremediation of pulp and paper mill effluent by a novel fungal consortium isolated from polluted soil. Bioresour Technol 98:3647–3651

    CAS  Google Scholar 

  • Manzanares P, Fajardo S, Martin C (1995) Production of ligninolytic activities when treating paper pulp effluents by Trametes versicolor. J Biotechnol 43:125–132

    CAS  Google Scholar 

  • Martel PH, O'Connor B, Kovacs TG, van den Heuvel MR, Parrott JL, McMaster ME, MacLatchy DL, van Der Kraak GJ, Hewitt LM (2017) The relationship between organic loading and effects on fish reproduction for pulp mill effluents across Canada. Environ Sci Technol 51(6):3499–3507

    CAS  Google Scholar 

  • Martin C, Manzanares P (1994) A study of the decolorization of straw soda pul** effluents by Trametes versicolor. Bioresour Technol 47:209–214

    CAS  Google Scholar 

  • Mazumdar K, Das S (2015) Phytoremediation of Pb, Zn, Fe, and Mg with 25 wetland plant species from a paper mill contaminated site in North East India. Environ Sci Pollut Res 22:701–710

    CAS  Google Scholar 

  • Medhi UJ, Talukdar AK, Deka S (2008) Effect of pulp and paper mill effluent on seed germination and seedling growth of mustard (Brassica campestris), pea (Pisum sativum) and rice (Oryza sativa) seeds. Pollut Res 27(3):437–442

    CAS  Google Scholar 

  • Medhi UJ, Talukdar AK, Deka S (2011) Impact of paper mill effluent on growth and development of certain agricultural crops. J Environ Biol 32:185–188

    CAS  Google Scholar 

  • Megraw SR, Farkas MO (1993) E. Coli: a potential source of native fecal coliforms in pulp paper mill effluent. Pulp Paper Canada 94(6):39–41

    CAS  Google Scholar 

  • Mehna A, Bajpai P, Bajpai PK (1995) Studies on decolorization of effluent from a small pulp mill utilizing agriresidues with Trametes versicolor. Enzym Microb Technol 17:18–22

    CAS  Google Scholar 

  • Michel FC Jr, Balachandra Dass S, Grulke EA, Adinarayana Reddy C (1991) Role of manganese peroxidases and lignin peroxidases of Phanerochaete chrysosporium in the decolorization of Kraft bleach plant effluent. Appl Environ Microbiol 57(8):2368–2375

    CAS  Google Scholar 

  • Mishra M, Thakur IS (2010) Isolation and characterization of alkalotolerant bacteria and optimization of process parameters for decolorization and detoxification of pulp and paper mill effluent by Taguchi approach. Biodegradation 21:967

    CAS  Google Scholar 

  • Mishra S, Mohanty M, Pradhan C, Patra HK, Das R, Sahoo S (2013) Physicochemical assessment of paper mill effluent and its heavy metal remediation sing aquatic macrophytes – a case study at JK paper mill, Rayagada, India. Environ Monit Assess 185(5):4347–4359

    CAS  Google Scholar 

  • Mishra M, Das MT, Thakur IS (2014) Mammalian cell-line based toxicological evaluation of paper mill black liquor treated in a soil microcosm by indigenous alkalo-tolerant Bacillus sp. Environ Sci Pollut Res 21:2966–2976

    CAS  Google Scholar 

  • Mishra T, Ramola S, Shankhwar AK, Rabha AK, Srivastava RK (2016) Pulp and paper mill effluent treatment by hybrid anaerobic upflow fixed-bed bioreactor combined with slow sand filter. Desalin Water Treat 57:10528–10536

    CAS  Google Scholar 

  • Mittar D, Khanna PK, Marwaha SS, Kennedy JF (1992) Biobleaching of pulp and paper mill effluents by Phanerochaete chrysosporium. J Chem Technol Biotechnol 53:81–92

    CAS  Google Scholar 

  • Modi DR, Chandra H, Garg SK (1998) Decolorization of bagasse based paper mill effluent by white-rot fungus, Trametes versicolor. Bioresource Technol 66:79–81

    CAS  Google Scholar 

  • Moore JA, Skarda SM, Sherwood R (1994) Wetland treatment of pulp mill wastewater effluent. Water Sci Technol 29(4):241–247

    CAS  Google Scholar 

  • Morii H, Nakamiya K, Kinoshita S (1995) Isolation of a lignin-decolorizing bacterium. J Ferment Bioeng 80:296–299

    CAS  Google Scholar 

  • Muttray AF, Yu Z, Mohn WW (2001) Population dynamics and metabolic activity of Pseudomonas abietaniphila BKME-9 within pulp mill wastewater microbial communities assayed by competitive PCR and RT-PCR. FEMS Microbiol Ecol 38(1):21–31

    CAS  Google Scholar 

  • Nagarathnamma R, Bajpai P (1999) Decolorization and detoxification of extraction-stage effluent from chlorine bleaching of Kraft pulp by Rhizopus oryzae. Appl Environ Microbiol 65(3):1078–1082

    CAS  Google Scholar 

  • Nagarathnamma R, Bajpai P, Bajpai PK (1999) Studies on decolourization, degradation and detoxification of chlorinated lignin compounds in Kraft bleaching effluents by Ceriporiopsis subvermispora. Process Biochem 34:939–948

    CAS  Google Scholar 

  • Nestmanna ER, Lee EG-H (1985) Genetic activity in Saccharomyces cerevisiae of compounds found in effluents of pulp and paper mills. Mutat Res/Genet Toxicol 155(1–2):53–60

    Google Scholar 

  • Oakes KD, Tremblay LA, van der Kraak GJ (2005) Short-term lab exposures of immature rainbow trout (Oncorhynchus mykiss) to sulfite and Kraft pulp-mill effluents: effects on oxidative stress and circulating sex steroids. Environ Toxicol Chem 24(6):1451–1461

    CAS  Google Scholar 

  • Ojha AK, Markandeya (2016) Lignin decolorization and degradation of pulp and paper mill effluent by ligninolytic bacteria. Iranica J Energ Environ 7(3):282–293

    CAS  Google Scholar 

  • Ojunga S, Masese FO, Manyala JO, Etiegni L, Onkware AO, Senelwa K, Raburu PO, Balozi BK, Omutange ES (2010) Impact of a Kraft pulp and paper mill effluent on phytoplankton & macroinvertebrates in river Nzoia, Kenya. Water Qual Res J Canada 45(2):235–250

    CAS  Google Scholar 

  • Oke N, Singh S, Garg A (2017) A comparative treatment of bleaching wastewater by physicochemical processes. Water Sci Technol 76(9–10):2367–2379

    CAS  Google Scholar 

  • Orlando EF, Davis WP, Guillette LJ Jr (2002) Aromatase activity in the ovary and brain of the eastern mosquitofish (Gambusia holbrooki) exposed to paper mill effluent. Environ Health Perspect 110:429–433

    CAS  Google Scholar 

  • Orrego R, Pandelides Z, Guchardi J, Holdway D (2011) Effects of pulp and paper mill effluent extracts on liver anaerobic and aerobic metabolic enzymes in rainbow trout. Ecotoxicol Environ Saf 74(4):761–768

    CAS  Google Scholar 

  • Pandey A, Panwar S, Mishra S, Siddiqui NA (2012) Comparison of fish toxicity & microtox toxicity of luminescent bacteria due to bleach plant effluent released from agro & wood based pulp and paper mills. Environ Anal Toxicol 2(1):1–4

    Google Scholar 

  • Parks LG, Lambright CS, Orlando EF, Guillette LJ Jr, Ankley GT, Gray LE Jr (2001) Masculinization of female mosquitofish in Kraft mill effluent-contaminated Fenholloway River water is associated with androgen receptor agonist activity. Toxicol Sci 62(2):257–267

    CAS  Google Scholar 

  • Patel A, Arora N, Pruthi V, Pruthi PA (2017) Biological treatment of pulp and paper industry effluent by oleaginous yeast integrated with production of biodiesel as sustainable transportation fuel. J Clean Prod. https://doi.org/10.1016/j.jclepro.2016.10.184

  • Pathan TS, Sonawane DL, Khillare YK (2009) Toxicity and behavioural changes in freshwater fish Rasbora daniconius exposed to paper mill effluent. Bot Res Int 2(4):263–266

    CAS  Google Scholar 

  • Peralta-Zamora P, Gomes De Morases S, Esposito E, Antunes R, Reyes J, Duran N (1998) Decolourisation of pulp mill effluents with immobilised lignin and manganese peroxidase from Phanerochaete chrysosporium. Int Technol 19:521–528

    Google Scholar 

  • Perestelo F, Falcon MA, Perez ML, Roig EC, de la Fuente Martin G (1989) Bioalteration of Kraft pine lignin by Bacillus megaterium isolated from compost piles. J Ferment Bioeng 68:151–153

    CAS  Google Scholar 

  • Pihlajamäki A, Nyström M (2002) Comparison of nanofiltration and tight ultrafiltration membranes in the filtration of paper mill process water. J Desal 149:131–136

    Google Scholar 

  • Pokhrel D, Viraraghavan T (2004) Treatment of pulp and paper mill wastewater – a review. Sci Total Environ 333:37–58

    CAS  Google Scholar 

  • Poole NJ, Wildish DJ, Kristmanson DD, Waldichuk M (1977) The effects of the pulp and paper industry on the aquatic environment. Environ Sci Technol 8(1–4):153–195

    Google Scholar 

  • Pradhan SC, Behera P (2011) Changes in some physical properties of soil amended with effluent of emami paper mills located at Balgopalpur, Balasore, Orissa. The Bioscan 6(1):153–155

    Google Scholar 

  • Qadir I, Chhipa RC (2015) Critical evaluation of some available treatment techniques for textile and paper industry effluents: a review. Am Chem Sci J 6(2):77–90

    Google Scholar 

  • Ragunathan R, Swaminathan K (2004) Biological treatment of a pulp and paper industry effluent by Pleurotus spp. World J Microbiol Biotechnol 20:389–393

    CAS  Google Scholar 

  • Raj A, Chandra R (2004) Comparative analysis of physico-chemical and bacteriological parameters of Kraft and pulp paper mill effluents. Indian J Environ Protect 24(7):481–489

    CAS  Google Scholar 

  • Raj A, Chandra R, Patel DK (2005) Physico-chemical characterization of pulp and paper mill effluent and toxicity assessment by a tubificid worm, Tubifex tubifex. Toxicol Int 12(2):109–118

    CAS  Google Scholar 

  • Raj A, Chandra R, Reddy MMK, Purohit HJ, Kapley A (2007a) Biodegradation of Kraft lignin by a newly isolated bacterial strain, Aneurinibacillus aneurinilyticus from the sludge of a pulp paper mill. World J Microbiol Biotechnol 23(6):793–799

    CAS  Google Scholar 

  • Raj A, Reddy MMK, Chandra R (2007b) Decolorisation and treatment of pulp and paper mill effluent by lignin-degrading Bacillus sp. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.1683

  • Raj A, Kumara S, Haq I, Singh SK (2014a) Bioremediation and toxicity reduction in pulp and paper mill effluent by newly isolated ligninolytic Paenibacillus sp. Ecol Eng 71:355–362

    Google Scholar 

  • Raj A, Kumar S, Haq I, Singh SK (2014b) Bioremediation and toxicity reduction in pulp and paper mill effluent by newly isolated ligninolytic Paenibacillus sp. Ecol Eng 71:355–362

    Google Scholar 

  • Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842

    CAS  Google Scholar 

  • Rajwar D, Paliwal R, Rai JPN (2017) Biodegradation of pulp and paper mill effluent by co-culturing ascomycetous fungi in repeated batch process. Environ Monit Assess 189:482

    Google Scholar 

  • Rani N, Maheshwari RC, Kumar V, Vijay VK (2011) Purification of pulp and paper mill effluent through Typha and Canna using constructed wetlands technology. J Water Reuse Desalin 1(4):237–242

    CAS  Google Scholar 

  • Rocha-Santos T, Ferreira F, Silva L, Freitas AC, Pereira R, Diniz M, Castro L, Peres I, Duarte AC (2010) Effects of tertiary treatment by fungi on organic compounds in a Kraft pulp mill effluent. Environ Sci Pollut Res 17:866–874

    CAS  Google Scholar 

  • Rodrigues AC, Boroski M, Shimada NS, Garcia JC, Nozaki J, Hioka N (2008) Treatment of paper pulp and paper mill wastewater by coagulation–flocculation followed by heterogeneous photocatalysis. J Photochem Photobiol A Chem 194(1):1–10

    CAS  Google Scholar 

  • Roy RP, Prasad J, Joshi AP (2008) Changes in soil properties due to irrigation with paper industry wastewater. J Environ Sci Eng 50(4):277–282

    CAS  Google Scholar 

  • Saikia MK, Kalita S, Sarma GC (2010) Algal indices to predict pulp and paper mill pollution load of Elenga Beel (Wetland) Assam, India. Soc Appl Sci 1(4):815–821

    Google Scholar 

  • Saikia MK, Kalita S, Sarma GC (2011) An experimental investigation on growth stimulation (+) and inhibition (−) of algae (Oscillatoria chlorina and Scenedesmus quadricauda) treated with pulp and paper mill effluents. Int J Appl Biol Pharm Technol 2(4):87–94

    Google Scholar 

  • Sandstrom O, Neuman E, Karas P (1988) Effects of bleached pulp mill effluent on growth and gonad function in Baltic coastal fish. Water Sci Technol 20:107–118

    Google Scholar 

  • Savant DV, Abdul-Rahman R, Ranade DR (2006) Anaerobic degradation of adsorbable organic halides (AOX) from pulp and paper industry wastewater. Bioresour Technol 97:1092–1104

    CAS  Google Scholar 

  • Schutyser W, Renders T, Van den Bosch S, Koelewijn S-F, Beckham GT, Sels BF (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47:852–908

    CAS  Google Scholar 

  • Sharma S, Agarwal L, Kumar R (2008) Purification, immobilization and characterization of tannase from Penicillium variable. Bioresour Technol 99:2544–2551

    CAS  Google Scholar 

  • Shi Y, Chai L, Tang C, Yang Z, Zheng Y, Chen Y, **g Q (2013) Biochemical investigation of Kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slips. Bioprocess Biosyst Eng 36:1957–1965

    CAS  Google Scholar 

  • Singh AK, Chandra R (2019) Pollutants released from the pulp paper industry: aquatic toxicity and their health hazards. Aquat Toxicol. https://doi.org/10.1016/j.aquatox.2019.04.007

  • Singh P, Thakur IS (2006) Colour removal of anaerobically treated pulp and paper mill effluent by microorganisms in two steps bioreactor. Bioresour Technol 97:218–223

    CAS  Google Scholar 

  • Singh YP, Dhall P, Mathur RM, Jain RK, Thakur V, Kumar V, Kumar R, Kumar A (2011) Bioremediation of pulp and paper mill effluent by tannic acid degrading Enterobacter sp. Water Air Soil Pollut 218:693–701

    CAS  Google Scholar 

  • Singhal A, Thakur IS (2009a) Decolourisation and detoxification of pulp and paper mill effluent by Emericella nidulans var. nidulans. J Hazard Mat 171:619–625

    CAS  Google Scholar 

  • Singhal A, Thakur IS (2009b) Decolourisation and detoxification of pulp and paper mill effluent by Cryptococcus sp. Biochem Eng J 46:21–27

    CAS  Google Scholar 

  • Singhal A, Thakur IS (2012) Two step sequential treatment of pulp and paper mill effluent by Cryptococcus albidus and Emericella nidulans var. nidulans in 2 L bioreactor. Can J Chem Eng. https://doi.org/10.1002/cjce.20547

  • Sonowal PJ, Dhamodharan K, Khwairkpam M, Kalamdhad AS (2013) Feasibility of vermicomposting dewatered sludge from paper mills using Perionyx excavatus. Eur J Environ Sci 3:6–23

    Google Scholar 

  • Srivastava R, Kumar D, Gupta SK (2005) Bioremediation of municipal sludge by vermitechnology and toxicity assessment by Allium cepa. Bioresour Technol 96:1867–1871

    CAS  Google Scholar 

  • Stephenson R, Duff S (1996) Coagulation and precipitation of a mechanical pul** effluent—II. Toxicity removal and metal salt recovery. J Water Res 30:793–798

    CAS  Google Scholar 

  • Stottmeister U, Wiessner A, Kuschk P, Kappelmeyer MK, Bederski RA, Muller H, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117

    CAS  Google Scholar 

  • Subramonian W, Wu TY, Chai S (2017) Photocatalytic degradation of industrial pulp and paper mill effluent using synthesized magnetic Fe2O3-TiO2: treatment efficiency and characterizations of reused photocatalyst. J Environ Manag 187:298–310

    CAS  Google Scholar 

  • Sutharn S, Sajwan P, Kumar K (2014) Vermiremediation of heavy metals in wastewater sludge from paper and pulp industry using earthworm Eisenia fetida. Ecotoxicol Environ Saf 109:177–184

    Google Scholar 

  • Swamy NK, Singh P, Sarathy IP (2011) Precipitation of phenols from paper industry waste paper using ferric chloride. RASÁYAN J Chem 4:452–456

    CAS  Google Scholar 

  • Talat Mahmood PE, Asce M, Elliott A (2006) Activated sludge process modification for sludge yield reduction using pulp and paper wastewater. J Environ Eng 132:1019–1027

    Google Scholar 

  • Tarlan E, Dilek FB, Yetis U (2002a) Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater. Bioresour Technol 84(1):1–5

    CAS  Google Scholar 

  • Tarlan E, Yetis Ü, Dilek FB (2002b) Algal treatment of pulp and paper industry wastewaters in SBR systems. Water Sci Technol 45(12):151–158

    CAS  Google Scholar 

  • Tettleton RP, Howell FG, Reaves RP (1993) Performance of a constructed marsh in the tertiary treatment of bleach Kraft pulp mill effluent: results of a 2-year pilot project. In: Moshiri AG (ed) Constructed wetlands for water quality improvement. Lewis Publishers, Boca Raton, FL, pp 437–440

    Google Scholar 

  • Thakur IS (2004) Screening and identification of microbial strains for removal of colour and adsorbable organic halogens in pulp and paper mill effluent. Process Biochem 39(11):1693–1699

    CAS  Google Scholar 

  • Thompson G, Swai J, Kay M, Forster C (2001) The treatment of pulp and paper mill effluent: a review. Bioresour Technol 77:275–286

    CAS  Google Scholar 

  • Thut RN (1990) Treatment of pulp mill effluent by an artificial marsh. Large-scale pilot study. Proceeding of the TAPPI Environmental Conference, TAPPI, TAPPI, Washington, DC, pp. 121–127

    Google Scholar 

  • Thut RN (1993) Feasibility of treating pulp mill effluent with a constructed wetland. In: Moshiri AG (ed) Constructed wetlands for water quality improvement. Lewis Publishers, Boca Raton, FL, pp 441–447

    Google Scholar 

  • Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci U S A 81(8):2280–2284

    CAS  Google Scholar 

  • Tiku DK, Kumar A, Chaturvedi R, Makhijani SD, Manoharan A, Kumar R (2010) Holistic bioremediation of pulp mill effluents using autochthonous bacteria. Int Biodeterior Biodegradation 64:173–183

    CAS  Google Scholar 

  • Tyor AK, Fulia A, Sharma RK (2012) Impact of paper mill effluent on the survival and hatchability of Cyprinus carpio. Res J Environ Toxicol 6(2):33–41

    Google Scholar 

  • Usha MT, Sarat Chandra T, Sarada R, Chauhan VS (2016) Removal of nutrients and organic pollution load from pulp and paper mill effluent by microalgae in outdoor open pond. Bioresour Technol 214:856–860

    CAS  Google Scholar 

  • Van den Bosch S, Koelewijn SF, Renders T, Van den Bossche G, Vangeel T, Schutyser W, Sels BF (2018) Catalytic strategies towards lignin-derived chemicals. Top Curr Chem (Cham) 376(5):36

    Google Scholar 

  • Verma Y (2008) Toxicity assessment of pulp- paper mill effluents employing Daphnia bioassay. Jpn J Environ Toxicol 11(2):151–156

    Google Scholar 

  • Vymazal J (2014) Constructed wetlands for treatment of industrial wastewaters: a review. Ecol Eng 73:724–751

    Google Scholar 

  • Wartman CA, Hogana NS, Hewitt LM, McMaster ME, Landman MJ, Taylor S, Kovacs TG, van den Heuvel MR (2009) Androgenic effects of a Canadian bleached kraft pulp and paper effluent as assessed using three spine stickle back (Gasterosteus aculeatus). Aquat Toxicol 92(3):131–139

    Google Scholar 

  • Watson SB, Ridal J, Zaitlin B, Lo A (2003) Odours from pulp mill effluent treatment ponds: the origin of significant levels of geosmin and 2-methylisoborneol (MIB). Chemosphere 51(8):765–773

    CAS  Google Scholar 

  • Wong DW (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157(2):174–209

    CAS  Google Scholar 

  • Wu J, **ao Y, Yu H (2005) Degradation of lignin in pulp mill wastewaters by white-rot fungi on biofilm. Bioresour Technol 96:1357–1363

    CAS  Google Scholar 

  • Xu Z, Qin L, Cai M, Hua W, ** M (2018) Biodegradation of Kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains. Environ Sci Pollut Res Int 25(14):14171–14181

    CAS  Google Scholar 

  • Yadav RD, Chaudhry S, Dhiman SS (2010) Biopul** and its potential to reduce effluent loads from bleaching of hardwood Kraft pulp. Bioresources 5:159–171

    CAS  Google Scholar 

  • Yadav D, Pruthi V, Kumar P (2016) Enhanced biological phosphorus removal in aerated stirred tank reactor using aerobic bacterial consortium. J Water Process Eng 13:61–69

    Google Scholar 

  • Yang C, Cao G, Li Y, Zhang X, Ren H et al (2008) Correction: a constructed alkaline consortium and its dynamics in treating alkaline black liquor with very high pollution load. PLOS ONE 3(12). https://doi.org/10.1371/annotation/2cc5374b-b2cf-4f78-9952-0343272bfe2f

  • Yeber MC, Rodrlguez J, Freer J, Baeza J, Durdn N, Mansilla HD (1999) Advanced oxidation of a pulp mill bleaching wastewater. Chemosphere 39(10):1679–1688

    CAS  Google Scholar 

  • Yu Z, Mohn WW (2002) Bioaugmentation with the resin acid-degrading bacterium Zoogloea resiniphila DhA-35 to counteract pH stress in an aerated lagoon treating pulp and paper mill effluent. Water Res 36:2793–2801

    CAS  Google Scholar 

  • Zhang Y, Ma C, Ye F, Kong Y, Li H (2009) The treatment of wastewater of paper mill with integrated membrane process. Desalination 236(1–3):349–356

    CAS  Google Scholar 

  • Zouari H, Labat M, Sayadi S (2002) Degradation of 4-chlorophenol by the white rot fungus Phanerochaete chrysosporium in free and immobilized cultures. Bioresour Technol 84:145–150

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V., Thakur, I.S., Shah, M.P. (2020). Bioremediation Approaches for Treatment of Pulp and Paper Industry Wastewater: Recent Advances and Challenges. In: Shah, M. (eds) Microbial Bioremediation & Biodegradation. Springer, Singapore. https://doi.org/10.1007/978-981-15-1812-6_1

Download citation

Publish with us

Policies and ethics

Navigation