Materials Design of High-Entropy Materials

  • Chapter
  • First Online:
High-Entropy Materials

Abstract

Different from the traditional alloys, a variety of elements and the extended concept of the high-entropy alloys make the compositional selection of high-entropy alloys more flexible. Furthermore, there are three different kinds of phases probably forming in the high-entropy alloys—intermetallics, amorphous, and solid solutions. How to quickly select the alloy composition to get the desired microstructures and excellent comprehensive performance becomes an urgent problem to be solved. In this chapter, many kinds of methods based on the thermodynamics and dynamics theories are introduced, including some empirical criteria, with which the phase formation can be predicted simply through the nature of the elements. Elements can also be selected through their performance. Moreover, with the development of “Material Genome Project”, the right composition with exactly the best properties can be quickly found at one time, including the methods of calculated phase diagram, cuckoo search algorithm, and the compositional graded materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yeh, Jien-Wei, Swe-Kai Chen, Su-Jien Lin, et al. 2004. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials 6.

    Article  CAS  Google Scholar 

  2. Zhao, K., X.X. **a, H.Y. Bai, et al. 2011. Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature. Applied Physics Letters 98: 141913.

    Article  Google Scholar 

  3. Zhao, S.F., Y. Shao, X. Liu, et al. 2015. Pseudo-quinary Ti20Zr20Hf20Be20(Cu20−xNix) high entropy bulk metallic glasses with large glass forming ability. Materials and Design 87: 625–631.

    Article  CAS  Google Scholar 

  4. Li, R.X., and Y. Zhang. 2017. Entropy and glass formation. Acta Physica Sinica 66: 177101.

    Google Scholar 

  5. Tsai, K.Y., M.H. Tsai, and J.W. Yeh. 2013. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia 61: 4887–4897.

    Article  CAS  Google Scholar 

  6. Gao, M.C., J.W. Yeh, P.K. Liaw, and Y. Zhang. 2016. High-entropy alloys: Fundamentals and applications. Springer.

    Google Scholar 

  7. **ao, J.M., and F.W. Zhu. 1999. Material energetics: The relationship, calculation and application of energy.

    Google Scholar 

  8. Zhang, Y., T.T. Zuo, Z. Tang, et al. 2014. Microstructures and properties of high-entropy alloys. Progress in Materials Science 61: 1–93.

    Article  Google Scholar 

  9. Guo, S., Q. Hu, C. Ng, et al. 2013. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics 41 (10): 96–103

    Article  Google Scholar 

  10. Yeh, J.W., S.K. Chen, S.J. Lin, et al. 2004. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials 6: 299–303.

    Article  CAS  Google Scholar 

  11. Takeuchi, A., and A. Inoue. 2001. Quantitative evaluation of critical cooling rate for metallic glasses. Materials Science & Engineering A s 304–306: 446–451.

    Article  Google Scholar 

  12. Yao, H., J. Qiao, M. Gao, et al. 2016. NbTaV-(Ti, W) refractory high-entropy alloys: Experiments and modeling. Materials Science and Engineering A 674: 203–211.

    Article  CAS  Google Scholar 

  13. Guo, S., C. Ng, J. Lu, et al. 2011. Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys. Journal of Applied Physics 109: 213.

    Google Scholar 

  14. King, D.J.M., S.C. Middleburgh, A.G. McGregor, et al. 2016. Predicting the formation and stability of single phase high-entropy alloys. Acta Materialia 104: 172–179.

    Article  CAS  Google Scholar 

  15. Ye, Y.F., Q. Wang, J. Lu, et al. 2015. Design of high entropy alloys: A single-parameter thermodynamic rule. Scripta Materialia 104: 53–55.

    Article  CAS  Google Scholar 

  16. Ye, Y.F., Q. Wang, J. Lu, C.T. Liu, and Y. Yang. 2015. Intermetallics 59: 75.

    Article  CAS  Google Scholar 

  17. Ye, Y.F., C.T. Liu, and Y. Yang. 2015. A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta Materialia 94: 152–161.

    Article  CAS  Google Scholar 

  18. Yang, X., S.Y. Chen, J.D. Cotton, et al. 2014. Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium. JOM Journal of the Minerals Metals and Materials Society 66 (10): 2009–2020.

    Article  CAS  Google Scholar 

  19. Takeuchi, A., and A. Inoue. 2005. Development of metallic glasses by semi-empirical calculation method. Journal of Metastable and Nanocrystalline Materials 24–25: 283–286.

    Article  Google Scholar 

  20. Huo, J.T., L.S. Huo, H. Men, et al. 2015. The magnetocaloric effect of Gd-Tb-Dy-Al-M (M = Fe, Co and Ni) high-entropy bulk metallic glasses. Intermetallics 58: 31–35.

    Article  CAS  Google Scholar 

  21. Huo, J.T., L.S. Huo, J.W. Li, et al. 2015. High-entropy bulk metallic glasses as promising magnetic refrigerants. Journal of Applied Physics 117.

    Article  Google Scholar 

  22. Qi, T.L., Y.H. Li, A. Takeuchi, et al. 2015. Soft magnetic Fe25Co25Ni25(B, Si)(25) high entropy bulk metallic glasses. Intermetallics 66: 8–12.

    Article  CAS  Google Scholar 

  23. Li, Y.H., W. Zhang, and T.L. Qi. 2017. New soft magnetic Fe25Co25Ni25(P, C, B)(25) high entropy bulk metallic glasses with large supercooled liquid region. Journal of Alloys and Compounds 693: 25–31.

    Article  CAS  Google Scholar 

  24. Ding, H.Y., Y. Shao, P. Gong, et al. 2014. A senary TiZrHfCuNiBe high entropy bulk metallic glass with large glass-forming ability. Materials Letters 125: 151–153.

    Article  CAS  Google Scholar 

  25. Ding, H.Y., and K.F. Yao. 2013. High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass. Journal of Non-Crystalline Solids 364: 9–12.

    Article  CAS  Google Scholar 

  26. Zhao, S.F., G.N. Yang, H.Y. Ding, et al. 2015. A quinary Ti-Zr-Hf-Be-Cu high entropy bulk metallic glass with a critical size of 12 mm. Intermetallics 61: 47–50.

    Article  CAS  Google Scholar 

  27. Takeuchi, A., N. Chen, T. Wada, et al. 2011. Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics 19: 1546–1554.

    Article  CAS  Google Scholar 

  28. Ma, L.Q., L.M. Wang, T. Zhang, et al. 2002. Bulk glass formation of Ti-Zr-Hf-Cu-M (M = Fe, Co, Ni) alloys. Materials Transactions 43: 277–280.

    Article  CAS  Google Scholar 

  29. Zhao, K., W. Jiao, J. Ma, et al. 2012. Formation and properties of strontium-based bulk metallic glasses with ultralow glass transition temperature. Journal of Materials Research 27: 2593–2600.

    Article  CAS  Google Scholar 

  30. Senkov, O.N., J.D. Miller, D.B. Miracle, et al. 2015. Accelerated exploration of multi-principal element alloys with solid solution phases. Nature Communications 6: 6529.

    Article  CAS  Google Scholar 

  31. Troparevsky, M.C., J.R. Morris, P.R.C. Kent, et al. 2015. Criteria for predicting the formation of single-phase high-entropy alloys. Physical Review X 5.

    Google Scholar 

  32. Sharma, A., R. Singh, P.K. Liaw, et al. 2017. Cuckoo searching optimal composition of multicomponent alloys by molecular simulations. Scripta Materialia 130: 292–296.

    Article  CAS  Google Scholar 

  33. **ang, X.-D., **aodong Sun, Gabriel BriceAo, et al. 1995. A combinatorial approach to materials discovery. Nature 268: 1738–1740.

    Article  CAS  Google Scholar 

  34. Cao, Siwei, and Ji-Cheng Zhao. 2015. Application of dual-anneal diffusion multiples to the effective study of phase diagrams and phase transformations in the Fe–Cr–Ni system. Acta Materialia 88: 196–206.

    Article  CAS  Google Scholar 

  35. Welk, Brian A., Robert E.A. Williams, Gopal B. Viswanathan, et al. 2013. Nature of the interfaces between the constituent phases in the high entropy alloy CoCrCuFeNiAl. Ultramicroscopy 134: 193–199.

    Article  CAS  Google Scholar 

  36. Li, R.X., P.K. Liaw, and Y. Zhang. 2017. Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides. Materials Science and Engineering A 707: 668–673.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y. (2019). Materials Design of High-Entropy Materials. In: High-Entropy Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-8526-1_2

Download citation

Publish with us

Policies and ethics

Navigation