The Structure of the Periostin Gene, Its Transcriptional Control and Alternative Splicing, and Protein Expression

  • Chapter
  • First Online:
Periostin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1132))

  • 1879 Accesses

Abstract

Although many studies have described the role of periostin in various diseases, the functions of periostin derived from alternative splicing and proteinase cleavage at its C-terminus remain unknown. Further experiments investigating the periostin structures that are relevant to diseases are essential for an in-depth understanding of their functions, which would accelerate their clinical applications by establishing new approaches for curing intractable diseases. Furthermore, this understanding would enhance our knowledge of novel functions of periostin related to stemness and response to mechanical stress .

Material in this chapter has been adapted from Kudo (2017) [48] with permission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afanador E, Yokozeki M, Oba Y, Kitase Y, Takahashi T, Kudo A, Moriyama K (2005) Messenger RNA expression of periostin and twist transiently decrease by occlusal hypofunction in mouse periodontal ligament. Arc Oral Biol 50:1023–1031

    Article  CAS  Google Scholar 

  2. Annis DS, Ma H, Balas DM, Kumfer KT, Sandbo N, Potts GK, Coon JJ, Mosher DF (2015) Absence of vitamin-K-dependent γ-carboxylation in human periostin extracted from fibrotic lung of secreted from a cell line engineered to optimize γ-carboxylation. PLoS One 10:e0135374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Aurora AB, Porrello ER, Tan W, Mahmound AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN (2018) Macrophages are required for neonatal heart regeneration. J Clin Invest 124:1382–1392

    Article  CAS  Google Scholar 

  4. Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, Wu H, Yu K, Ornitz DM, Olson EN, Justice MJ, Karsenty G (2004) A twist code determines the onset of osteoblast differentiation. Develop Cell 6:423–435

    Article  CAS  Google Scholar 

  5. Bonnet N, Brun J, Rousseau J-C, Duong LT, Ferrari SL (2017) Cathepsin K controls cortical bone formation by degrading periostin. J Bone Miner Res 7:1432–1441

    Article  CAS  Google Scholar 

  6. Bultmann H, Santas AJ, Pesciotta Peters DM (1998) Fibronectin fibrillogenesis involves the heparin II binding domain of fibronectin. J Biol Chem 273:2601–2609

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, Guo H, Terajima M, Banerjee P, Liu X, Yu J, Momin AA, Karayama H, Hanash SM, Burns AR, Fields GB, Yamauchi M, Kurie JM (2016) Lysyl hydroxylase 2 is secreted by tumor cells and can modify collagen in the extracellular space. J Biol Chem 291:25799–25808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen Z, **e J, Hao H, Lin H, Wang L, Zhang Y, Chen L, Cao S, Huang X, Liao W, Bin J, Liao Y (2017) Ablation of periostin inhibits post-infarction myocardial regeneration in neonatal mice mediated by the phosphatidylinositol 3 kinase/glycogen synthase kinase 3β/cyclin D1 signaling pathway. Cardiovasc Res 113:620–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Connerney J, Andreeva V, Leshem Y, Muentener C, Mercado MA, Spicer DB (2006) Twist 1 dimer selection regulates cranial suture patterning and fusion. Dev Dyn 235:1345–1357

    Article  CAS  PubMed  Google Scholar 

  10. Conway SJ, Izuhara K, Kudo Y, Litvin J, Markwald R, Ouyang G, Arron JR, Holweg CTJ, Kudo A (2014) The role of periostin in tissue remodeling across health and disease. Cell Mol Life Sci 71:1279–1288

    Article  CAS  PubMed  Google Scholar 

  11. Coutu DL, Hui Wu J, Monette A, Rivard G-E, Blostein MD, Galipeau J (2008) Periostin, a member of a novel family of Vitamin K-dependent proteins, is expressed by mesenchymal stromal cells. J Biol Chem 283:17991–18001

    Article  CAS  PubMed  Google Scholar 

  12. Cox TR, Rumney RMH, Schoof EM, Perryman L, Hoye AM, Agrawal A, Bird D, Latif NA, Foreest H, Evans HR, Huggins ID, Lang G, Linding R, Gartland A, Erler JT (2015) The hypoxic cancer secretome induces pre-metastic bone lesions through lysyl oxidase. Nature 522:106–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dai Q, **e F, Han Y, Ma X, Zhou S, Jiang L, Zou W, Wang J (2017) Inactivation of regulatory-associated protein of mTOR (Raptor)/mammalian Target of Rapamycin Complex 1 (mTORC1) signaling in osteoclasts increases bone mass by inhibiting osteoclast differentiation in mice. J Biol Chem 292:196–204

    Article  CAS  PubMed  Google Scholar 

  14. de Lageneste PD, Julien A, Abou-Khalil R, Frangi G, Carvalho C, Cagnard N, Cordier C, Conway SJ, Colnot C (2018) Periostium contains skeletal stem cells with high bone regenerative potential controlled by periostin. Nat Commun 9:773

    Article  CAS  Google Scholar 

  15. Djokic J, Fagotto-Kaufmann C, Bartels R, Nelea V, Reinhardt DP (2013) Fiblin-3,-4, and-5 are highly susceptible to proteolysis, interact with cells and heparin, and form multimers. J Biol Chem 288:22821–22835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Doliana R, Bot S, Bonaldo P, Colombatti A (2000) EMI, a novel cysteine-rich domain of EMILINs and other extracellular proteins, interacts with the gC1q domains and participates in multimerization. FEBS Lett 484:164–168

    Article  CAS  PubMed  Google Scholar 

  17. Franco HL, Casasnovas JJ, Lenon RG, Friesel R, Ge Y, Desnick RJ (2011) Nonsense mutations of the bHLH transcription factor TWIST2 found in Setleis syndrome patients cause dysregulation of periostin. Int J Biochem Cell Biol 43:1523–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gamba L, Amin-Javaheri A, Kim J, Warburton D, Lien C-L (2017) Collagenolytic activity is associated with scar resolution in zebrafish hearts after cryoinjury. J Cardiovasc Dev Dis 4:2

    Article  PubMed Central  CAS  Google Scholar 

  19. Gartland A, Erler JT, Cox TR (2016) The role of lysyl oxidase, the extracellular matrix and the pre-metastatic niche in bone metastasis. J Bone Oncol 5:100–103

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ge G, Greenspan DG (2006) Developmental roles of the BMP1/TLD metalloproteinases. Birth Defects Res (Part C) 78:47–68

    Article  CAS  Google Scholar 

  21. Gineyts E, Bonnet N, Bertholon C, Millet M, Pagnon-Minot A, Borel O, Geraci S, Bonnelye E, Croset M, Suhail A, Truica C, Lamparella N, Leitzel K, Hartmann D, Chapurlat R, Lipton A, Ganero P, Ferrari S, Clezardin P, Rousseau J-C (2018) The C-terminal intact forms of periostin (iPTN) are surrogate markers for osteolytic lesions in experimental breast cancer bone metastasis. Calcified Tissue Int. https://doi.org/10.1007/s00223-018-0444-y

    Article  CAS  PubMed  Google Scholar 

  22. Gonzalez-Rosa JM, Peralta M, Mercader N (2012) Pan-epicardial lineage tracing reveals that epicardium derived cells give rise to myofibroblasts and perivascular cells during zebrafish heart regeneration. Dev Biol 370:173–186

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez-Rosa JM, Burns CE, Burns CG (2017) Zebrafish heart regeneration: 15 years of discoveries. Regeneration 4:105–123

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604

    Article  CAS  PubMed  Google Scholar 

  25. Guo X, Xue H, Shao Q, Wang J, Guo X, Chen X, Zhang J, Xu S, Li T, Zhang P, Gao X, Qiu W, Liu Q, Li G (2016) Hypoxia promotes glioma-associated macrophage infiltration via periostin and subsequent M2 polarization by upregulating TGF-beta and M-CSFR. Oncotarget 7:80521–80542

    PubMed  PubMed Central  Google Scholar 

  26. Gupta R, Hong D, Iborra F, Sarno S, Enver T (2007) NOV(CCN3) functions as a regulator of human hematopoietic stem of progenitor cells. Science 316:590–593

    Article  CAS  PubMed  Google Scholar 

  27. Han F, Gilbert JR, Harrison G, Adams CS, Freeman T, Tao Z, Zaka R, Liang H, Williams C, Tuan RS, Norton PA, Hickok NJ (2007) Transforming growth factor-β1 regulates fibronectin isoform expression and splicing factor SRp40 expression during ATDC5 chondrogenic maturation. Exp Cell Res 313:1518–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hashimoto K, Noshiro M, Ohno S, Kawamoto T, Satakeda H, Akagawa Y, Nakashima K, Okimura A, Ishida H, Okamoto T, Pan H, Shen M, Yan W, Kato Y (1997) Characterization of a cartilage-derived 66-kDa protein (RGD-CAP/beta ig-h3) that binds to collagen. Biochim Biophys Acta 1355:303–314

    Article  CAS  PubMed  Google Scholar 

  29. Hoersch S, Andrade-Navarro MA (2010) Periostin shows increased evolutionary plasticity in its alternatively spliced region. BMC Evo Biol 10:30

    Article  CAS  Google Scholar 

  30. Horiguchi M, Inoue T, Ohbayashi T, Hirai M, Noda K, Marmorstein LY, Yabe D, Takagi K, Akama TO, Kita T, Kimura T, Nakamura T (2009) Fibulin-4 conducts proper elastogenesis via interaction with cross-linking enzyme lysyl oxidase. Proc Natl Acad Sci U S A 45:19029–19034

    Article  Google Scholar 

  31. Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A (1999) Identification and characterization of a novel protein, periostin with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor β. J Bone Miner Res 14:1239–1249

    Article  CAS  PubMed  Google Scholar 

  32. Hortsh M, Goodman CS (1991) Cell and substrate adhesion molecules in Drosophila. Annu Rev Cell Biol 7:505–557

    Article  Google Scholar 

  33. Hudson JE, Porrello ER (2017) Periostin paves the way for neonatal heart regeneration. Cardiovasc Res 113:556–558

    Article  CAS  PubMed  Google Scholar 

  34. Inai K, Norris RA, Hoffman S, Markwald RR, Sugi Y (2008) BMP-2 induces cell migration and periostin expression during atrioventricular valvulogenesis. Dev Biol 315:383–396

    Article  CAS  PubMed  Google Scholar 

  35. Ishihara J, Umemoto T, Yamato M, Shiratsuchi Y, Takaki S, Petrich BG, Nakauchi H, Eto K, Kitamura T, Okano T (2014) Nov/CCN3 regulates long-term repopulating activity of murine hematopoietic stem cells via integrin avb3. Int J Hematol 99:393–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ito N, Ruegg UT, Kudo A, Miyagoe-Suzuki Y, Takeda S (2013) Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat Med 19:101–106

    Article  CAS  PubMed  Google Scholar 

  37. Ito K, Morioka M, Kimura S, Tasaki M, Inohaya K, Kudo A (2014) Differential reparative phenotypes between zebrafish and medaka after cardiac injury. Dev Dyn 243:1106–1115

    Article  CAS  PubMed  Google Scholar 

  38. Kashima TG, Nishiyama T, Shimazu K, Shimazaki M, Kii I, Grigoriadis AE, Fukayama F, Kudo A (2009) Periostin, a novel marker of intramembranous ossification, is expressed in fibrous dysplasia and in c-Fos-overexpressing bone lesions. Hum Pathol 40:226–237

    Article  CAS  PubMed  Google Scholar 

  39. Katogi R, Nakatani Y, Shin-I T, Kohara Y, Inohaya K, Kudo A (2004) Large-scale analysis of the genes involved in fin regeneration and blastema formation in the medaka, Oryzias latipes. Mech Dev 121:861–872

    Article  CAS  PubMed  Google Scholar 

  40. Khurana S, Schouteden S, Manesia JK, Sanamaria-Martinez A, Huelsken J, Lacy-Hulbert A, Verfaillie CM (2016) Outside-in integrin signaling regulates haematopoietic stem cell function via Periostin-Itgav axis. Nat Commun 7:13500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kii I, Nishiyama T, Li M, Matsumoto K, Saito M, Amizuka N, Kudo A (2010) Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture. J Biol Chem 285:2028–2039

    Article  CAS  PubMed  Google Scholar 

  42. Kii I, Nishiyama T, Kudo A (2016) Periostin promotes secretion of fibronectin from the endoplasmic reticulum. Biochem Biophy Res Commun 470:888–893

    Article  CAS  Google Scholar 

  43. Kim JE, Kim SJ, Lee BH, Park RW, Kim KS, Kim IS (2000) Identification of motifs for cell adhesion within the repeated domains of transforming growth factor-beta-induced gene, beta ig-h3. J Biol Chem 275:30907–30915

    Article  CAS  PubMed  Google Scholar 

  44. Kim BY, Olzmann JA, Choi SI, Ahn SY, Kim TI, Cho HS, Suh H, Kim EK (2009) Corneal dystrophy-associated R124H mutation disrupts TGFBI interaction with Periostin and causes mislocalization to the lysosome. J Biol Chem 284:19580–19591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim H-G, Hwang S-Y, Aaronson SA, Mandinova A, Lee SW (2011) DDR1 receptor tyrosin kinase promotes prosurvival pathway through Notch 1 activation. J Biol Chem 286:17672–17681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kondoh H, Nishiyama T, Kikuchi Y, Fukayama M, Saito M, Kii I, Kudo A (2016) Periostin deficiency causes severe and lethal lung injury in mice with bleomycin administration. J Histochem Cytochem 64:441–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kudo A (2011) Periostin in fibrillogenesis for tissue regeneration: periostin actions inside and outside the cell. Cell Mol Life Sci 68:3201–3207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kudo A (2017) Introductory review: periostin-gene and protein structure. Cell Mol Life Sci 74:4259–4268

    Article  CAS  PubMed  Google Scholar 

  49. Kudo H, Amizuka N, Araki K, Inohaya K, Kudo A (2004) Zebrafish periostin is required for the adhesion of muscle fiber bundles to the myoseptum and for the differentiation of muscle fibers. Dev Biol 267:473–487

    Article  CAS  PubMed  Google Scholar 

  50. Kurisaki K, Kurisaki A, Valcourt U, Terentiev AA, Pardali K, ten Dijke P, Heldin C-H, Ericsson J, Moustakas A (2003) Nuclear factor YY1 inhibits transforming growth factor {beta}- and bone morphogenetic protein-induced cell differentiation. Mol Cell Biol 23:4494–4510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lai S-L, Marin-Juez R, Moura PL, Kuenne C, Lai JKH, Tsedeke AT, Guenther S, Looso M, Stainier DYR (2017) Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration. elife 6:e25605

    Article  PubMed  PubMed Central  Google Scholar 

  52. Landre V, Antonov A, Knight R, Melino G (2016) p73 promotes glioblastoma cell invasion by directly activating POSN (periostin) expression. Oncotarget 7:11785–11802

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lee MS, Lowe G, Strong DD, Wergedal J, Glackin CA (1999) TWIST, a basic-loop-helix transcription factor, can regulate the human osteogenetic lineage. J Cell Biochem 75:566–567

    Article  CAS  PubMed  Google Scholar 

  54. Lindsley A, Snider P, Zhou H, Rogers R, Wang J, Olaopa M, Kruzynska-Frejtag A, Koushik SV, Lilly B, Burch JBE, Firulli AB, Conway SJ (2007) Identification and characterization of a novel Schwann and outflow tract endocardial cushion lineage-restricted periostin enhancer. Dev Biol 307:340–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu J, Zhang J, Xu F, Lin Z, Li Z, Liu H (2018) Structural characterization of human periostin dimerization and cysteinylation. FEBS Lett. https://doi.org/10.1002/1873-3468.13091

    Article  CAS  PubMed  Google Scholar 

  56. Maruhashi T, Kii I, Saito M, Kudo A (2010) Interaction between periostin and BMP-1 promotes proteolytic activation of lysyl oxidase. J Biol Chem 285:13294–13303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Masuoka M, Shiraishi H, Ohta S, Suzuki S, Arima K, Aoki S, Toda S, Inagaki N, Kurihara Y, Hayashida S, Takeuchi S, Koike K, Ono J, Noshiro H, Furue M, Conway SJ, Narisawa Y, Izihara K (2012) Periostin promotes chronic allergic inflammation in response to Th2 cytokines. J Clin Invest 122:2590–2600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Merie B, Bouet G, Rousseau J-C, Betholon C, Garnero P (2014) Periostin and transforming growth factor β-induced protein (TGFβIp) are both expressed by osteoblasts and osteoclasts. Cell Biol Int 38:398–404

    Article  CAS  Google Scholar 

  59. Mikheev AM, Mikheeva SA, Severts LJ, Funk CC, Huang L, McFaline-Figueroa JL, Schwensen J, Trapnell C, Price ND, Wong S, Rostomily RC (2018) Targeting TWIST1 through loss of function inhibits tumorigenicity of human glioblastoma. Mol Oncol 12:1188–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Morra L, Rechsteiner M, Casagrande S, Duc Luu V, Santimaria R, Diener PA, Sulser T, Kristiansen G, Schraml P, Moch H, Soltermann A (2011) Relevance of periostin splice variants in renal cell carcinoma. Am J Pathol 179:1513–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morra L, Rechsteiner M, Casagrande S, von Teichman A, Schraml P, Moch H, Soltermann A (2012) Characterization of periostin isoform pattern in non-small cell lung cancer. Lung Cancer 76:183–190

    Article  PubMed  Google Scholar 

  62. Munier FL, Korvatska E, Djemai A, Le Paslier D, Zografos L, Pescia G, Schorderet DF (1997) Kerato-epithelin mutations in four 5q31-linked corneal dystrophies. Nat Genet 15:247–251

    Article  CAS  PubMed  Google Scholar 

  63. Nakama T, Yoshida S, Ishikawa K, Kobayashi Y, Abe T, Kiyonari H, Shioi G, Katsuragi N, Ishibashi T, Morishita R, Taniyama Y (2016) Different roles played by periostin splice variants in retinal neovascularization. Exp Eye Res 153:133–140

    Article  CAS  PubMed  Google Scholar 

  64. Nance T, Smith KS, Anaya V, Richardson R, Lawrence H, Pala M, Mostafavi S, Battle A, Feghali-Bostwick C, Rosen G, Montgomery SB (2014) Transcriptome analysis reveals differential splicing events in IPF lung tissue. PLoS One 9:e92111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Nishioka T, Onishi K, Shimojo Y, Matsusaka H, Ikeuchi M, Ide T, Tsutsui H, Hiroe M, Yoshida T, Imanaka-Yoshida K (2010) Tenascin-C may aggregate left ventricular remodeling and function after myocardial infarction. Am J Physiol Heart Circ Physiol 298:H1072–H1078

    Article  CAS  PubMed  Google Scholar 

  66. Nishiyama T, Kii I, Kashima TG, Kikuchi Y, Ohazama A, Shimazaki M, Fukayama M, Kudo A (2011) Delayed re-epithelialization in periostin-deficient mice during cutaneous wound healing. PLoS One 4:e18410

    Article  CAS  Google Scholar 

  67. Noack S, Seiffart V, Willbold E, Laggies S, Winkel A, Shahab-Osterloh S, Florkemeier T, Hertwig F, Steinhoff C, Nuber UA, Gross G, Hoffmann A (2014) Periostin secreted by mesenchymal stem cells supports tendon formation in an ectopic mouse model. Stem Cell Develop 23:1844–1857

    Article  CAS  Google Scholar 

  68. O’Meara CC, Wamstad JA, Gladstone RA, Fomovsky GM, Butty VL, Shrikumar A, Gannon JB, Boyer LA, Lee RT (2015) Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration. Circ Res 116:804–815

    Article  PubMed  CAS  Google Scholar 

  69. Okada T, Kawakita F, Nishikawa H, Nakano F, Liu L, Suzuki H (2018) Selective Toll-like receptor 4 antagonists acute blood-brain barrier disruption after subarachnoid hemorrhage in mice. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1145-2

    Article  PubMed  CAS  Google Scholar 

  70. Oshima A, Tanabe H, Yan T, Lowe GN, Glackin CA, Kudo A (2002) A novel mechanism for the regulation of osteoblast differentiation.: transcription of periostin, a member of the fasciclin I family, is regulated by the bHLH transcription factor, twist. J Cell Biochem 86:792–804

    Article  CAS  PubMed  Google Scholar 

  71. Politz O, Gratchev A, McCourt PA, Schledzewski K, Guillot P, Johansson S, Svineng G, Franke P, Kannicht C, Kzhyshkowska J, Longati P, Velten FW, Johansson S, Goerdt S (2002) Stabilin-1 and -2 constitute a novel family of fasciclin-like hyaluronan receptor homologues. Biochem J 362:155–164

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Prakoura N, Chatziantoniou C (2017) Periostin and Discoidin Domain Receptor 1: new biomarkers or targets for therapy of renal disease. Front Med 4:52

    Article  Google Scholar 

  73. Rosselli-Murai LK, Almeida LO, Zagni C, Galindo-Moreno P, Padial-Molina M, Volk SL, Murai MJ, Rios HF, Squarize CH, Castilho RM (2013) Periostin responds to mechanical stress and tension by activating the MTOR signaling pathway. PLoS One 8:e83580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Schwanekamp JA, Lorts A, Sargent MA, York AJ, Grimes KM, Fischesser DM, Gokey JJ, Whitsett JA, Conway SJ, Molkentin JD (2017) TGFB1 functions similar to periostin but is uniquely dispensable during cardiac injury. PLoS One 12:e0181945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Seifert GJ (2018) Fascinating fasciclins: a surprisingly widespread family of proteins that mediate interactions between the cell exterior and the cell surface. Int J Mol Sci 19:1628

    Article  PubMed Central  CAS  Google Scholar 

  76. Shelton EL, Yutzey KE (2008) Twist 1 function in endocardial cushion cell proliferation, migration, and differentiation during heart valve development. Dev Biol 317:282–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shimazaki M, Nakamura K, Kii I, Kashima T, Amizuka N, Li M, Saito M, Fukuda K, Nishiyama T, Kitajima S, Saga Y, Fukayama M, Sata M, Kudo A (2008) Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med 205:295–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sidhu SS, Yuan S, Innes AL, Kerr S, Woodruff PG, Hou L, Muller SJ, Fahy JV (2010) Roles of epithelial cell-derived periostin in TGF-b activation, collagen production, and collagen gel elasticity in asthma. Proc Natl Acad Sci U S A 17:14170–14175

    Article  Google Scholar 

  79. Subramanian V, Meyer BI, Gruss P (1995) Disruption of the murine homeobox gene Cdx1 affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell 83:641–653

    Article  CAS  PubMed  Google Scholar 

  80. Sugiura T, Takamatu S, Kudo A, Amann E (1995) Expression and characterization of murine osteoblast-specific factor 2 (OSF-2) in a baculovirus expression system. Protein Expr Purif 6:305–311

    Article  CAS  PubMed  Google Scholar 

  81. Syx D, Guillemyn B, Symoens S, Sousa AB, Medeira A, Whiteford M, Hermanns-Le T, Coucke PJ, de Paepe A, Malfait F (2015) Defective proteolytic processing of fibrillar procollagens and prodecorin due to biallelic BMP1 mutations results in a severe, progressive form of Osteogenesis Imperfecta. J Bone Miner Res 30:1445–1456

    Article  CAS  PubMed  Google Scholar 

  82. Takayama I, Kudo A (2012) Periostin in dental science. Jpn Dent Sci Rev 48:92–98

    Article  Google Scholar 

  83. Takayama G, Arima K, Kanaji T, Toda H, Shoji S, McKenzie AN, Nagai H, Hotokebuchi T, Izuhara K (2006) Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J Allergy Clin Immunol 118:98–104

    Article  CAS  PubMed  Google Scholar 

  84. Takayama I, Tanabe H, Nishiyama T, Ito H, Amizuka N, Li M, Watanabe Y, Katsube K, Kii I, Kudo A (2017) Periostin is required for matricellular localization of CCN3 in periodontal ligament of mice. J Cell Commun Signal 11:5–13

    Article  PubMed  Google Scholar 

  85. Takeda M, Takeyama K, Mantoku A, Chatani M, Kudo A (2015) Periostin function in fracture healing of medaka finray. 0-067 page 173 in Abstracts in the 33rd Annual Meeting of the Japanese Society for Bone and Mineral Research

    Google Scholar 

  86. Takeshita S, Kikuno R, Tezuka K, Amann E (1993) Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J 294:271–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tanabe H, Takayama I, Nishiyama T, Shimazaki M, Kii I, Li M, Amizuka N, Katsube K, Kudo A (2010) Periostin associates with Notch 1 precursor to maintain Notch 1 expression under a stress condition in mouse cells. PLoS One 5:e12234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Tanaka S, Maekawa A, Matsubara L, Imanishi A, Yano M, Roeder RG, Hasegawa N, Asano S, Ito M (2016) Periostin supports hematopoietic progenitor cells and niche-dependent myeloblastoma cells in vitro. Biochem Biophys Res Commun 478:1706–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tang Y, Liu L, Wang P, Chen D, Wu Z, Tang C (2017) Periostin promotes migration and osteogenic differentiation of human periodontal ligament mesenchymal stem cells via the Jun amino-terminal kinases (JNK) pathway under inflammatory conditions. Cell Prolif 2017:e12369

    Article  CAS  Google Scholar 

  90. Tao S, Kuhl M, Kuhl SJ (2011) Expression of periostin during Xenopus laevis embryogenesis. Dev Genes Evol 221:247–254

    Article  CAS  PubMed  Google Scholar 

  91. van Vliet AI, van Alderwegen IE, Baelde HJ, Heer ED, Bruijn JA (2002) Fibronectin accumulation in glomerulosclerotic lesions: self-assembly sites and the heparin II binding domain. Kidney Int 61:481–489

    Article  PubMed  Google Scholar 

  92. Wang J, Massoudi D, Ren Y, Muir AM, Harris SE, Greenspan DS, Feng JQ (2017) BMP1 and TLL1 are required for maintaining periodontal homeostasis. J Dent Res 96:578–585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Wen W, Chau E, Jackson L, Elliott C, Daley TD, Hamilton DW (2010) TGF-β1 and FAK regulate periostin expression in PDL fibroblasts. J Dent Res 89:1439–1443

    Article  CAS  PubMed  Google Scholar 

  94. Wu T, Ouyang G (2015) Periostin: a potent chemotactic factor for recruiting tumor-associated macrophage. Protein Cell 6:235–237

    Article  PubMed  PubMed Central  Google Scholar 

  95. **ao S-M, Gao Y, Cheng C-L, Bow CH, Lau K-S, Sham PC, Tan KCB, Kung AWC (2012) Association of CDX1 binding site of peiostin gene with bone mineral density and vertebral fracture risk. Osteoporos Int 23:1877–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yamada S, Tauchi T, Awata T, Maeda K, Kajikawa T, Yanagita M, Murakami S (2014) Characterization of a novel periodontal ligament-specific periostin isoform. J Dent Res 93:891–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yokota K, Kobayakawa K, Saito T, Hara M, Kijima K, Ohkawa Y, Harada A, Okazaki K, Ishihara K, Yoshida S, Kudo A, Iwamoto Y, Okada S (2017) Periostin promotes scar formation through the interaction between pericytes and infiltrating monocytes/macrophages after spinal cord injury. Am J Pathol 187:639–653

    Article  CAS  PubMed  Google Scholar 

  98. Zeng J, Liu Z, Sun S, **e J, Cao L, Lv P, Nie S, Zhang B, **e B, Peng S, Jiang B (2018) Tumor-associated macrophages recruited by periostin in intrahepatic cholangiocarcinoma stem cells. Oncol Lett 15:8681–8686

    PubMed  PubMed Central  Google Scholar 

  99. Zho W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J, Wu L, Sloan AE, McLendon RE, Li X, Rich JN, Bao S (2014) Periostin secreted by glioblastoma stem cells recruits M2 tumor-associated macrophages and promotes malignant growth. Nat Cell Biol 17:170–182

    Article  CAS  Google Scholar 

  100. Zinn K, McAllister L, Goodman CS (1988) Sequence analysis and neuronal expression of faciclin I in grasshopper and Drosophila. Cell 53:577–587

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank my collaborators involved in the periostin project for providing figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kudo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kudo, A. (2019). The Structure of the Periostin Gene, Its Transcriptional Control and Alternative Splicing, and Protein Expression. In: Kudo, A. (eds) Periostin. Advances in Experimental Medicine and Biology, vol 1132. Springer, Singapore. https://doi.org/10.1007/978-981-13-6657-4_2

Download citation

Publish with us

Policies and ethics

Navigation