Persistent Organic Pollutants (POPs): Environmental Risks, Toxicological Effects, and Bioremediation for Environmental Safety and Challenges for Future Research

  • Chapter
  • First Online:
Bioremediation of Industrial Waste for Environmental Safety

Abstract

The persistent organic pollutants (POPs) such as organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) were detected in different media of environment such as air, water, and soil due to its persistence in nature. POPs have the efficacy to contaminate, accumulate, and bioaccumulate in any living organisms through the food chain. Since these are lipophilic and semi-volatile in nature, can move or transport through air mass in the far distance such as Arctic region and mountainous region where the pollutants were never used before. Thus, POPs have the tendency to retain in cold climate for a longer time. Stockholm Convention is a focus to control or eliminate the production and implement the policy against the toxic POPs because these can lead to serious health effects including cancers, birth defects, and dysfunctional immune, nervous, and reproductive systems. The Cucurbita family of plant species including pumpkins, squash, and zucchini has been used widely to uptake the PCBs, DDT, and PAH from contaminated sites. Some of the bacterial group such as Escherichia coli, Enterobacter aerogenes, Enterobacter cloacae, Pseudomonas aeruginosa, Pseudomonas putida, and Bacillus were also reported for the degradation of DDT compounds. The gram-negative (Pseudomonas, Alcaligenes, Achromobacter, Burkholderia sp.) and gram-positive (Rhodococcus, Corynebacterium, and Bacillus sp.) bacteria have been reported for the degradation of PCB compounds, respectively. Many of the native microorganisms develop complex and significantly effective metabolic pathways that allow the biodegradation of toxic compounds released into the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aamot E, Steinnes E, Schmid R (1996) Polycyclic aromatic hydrocarbons in Norwegian forest soils; impact of long-range atmospheric transport. Environ Pollut 92:275–280

    Article  CAS  Google Scholar 

  • Anderson PN, Hites RA (1996) OH radical reactions: the major removal pathway for polychlorinated biphenyls from the atmosphere. Environ Sci Technol 30:1756–1763

    Article  CAS  Google Scholar 

  • Arora PK, Srivastava A, Singh VP (2014) Bacterial degradation of nitrophenols and their derivatives. J Hazard Mater 266:42–59

    Article  CAS  Google Scholar 

  • Arora PK, Srivastava A, Garg SK, Singh VP (2018) Recent advances in degradation of chloronitrophenols. Bioresour Technol 250C:902–909

    Article  CAS  Google Scholar 

  • Alvarez-Bernal D, Contreras-Ramos S, Marsch R, Dendooven L (2007) Influence of cat claw Mimosa monancistra on the dissipation of soil PAHs. Int J Phytoremediation 9:79–90

    Google Scholar 

  • ATSDR (2000) Toxicological profile for endosulfan. Agency of Toxic Substances and Disease Registry, Atlanta http://www.atsdr.cdc.gov/toxprofiles/tp41.html

    Google Scholar 

  • Awasthi N, Ahrya R, Kumar A (2000) Factors influencing the degradation of soil applied endosulfan isomers. Soil Biol Biochem 32:1697–1705

    Article  CAS  Google Scholar 

  • Bharagava RN, Saxena G, Mulla SI, Patel DK (2017a) Characterization and identification of recalcitrant organic pollutants (ROPs) in tannery wastewater and its phytotoxicity evaluation for environmental safety. Arch Environ Contam Toxicol. https://doi.org/10.1007/s00244-017-0490-x

    Article  CAS  Google Scholar 

  • Bharagava RN, Saxena G, Chowdhary P (2017b) Constructed wetlands: an emerging phytotechnology for degradation and detoxification of industrial wastewaters. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 397–426. https://doi.org/10.1201/9781315173351-15

    Chapter  Google Scholar 

  • Bharagava RN, Chowdhary P, Saxena G (2017c) Bioremediation: an ecosustainable green technology: its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–22. https://doi.org/10.1201/9781315173351-2

    Chapter  Google Scholar 

  • Bharagava RN, Purchase D, Saxena G, Mulla SI (2018) Applications of metagenomics in microbial bioremediation of pollutants: from genomics to environmental cleanup. In: Das S, Dash H (eds) Microbial diversity in the genomic era, 1st edn. Academic Press, Elsevier. https://doi.org/10.1016/B978-0-12-814849-5.00026-5

    Chapter  Google Scholar 

  • Bidlan R, Manonmani HK (2002) Aerobic degradation of dichlorodiphenyltrichloroethane (DDT) by Serratia marcescens DT-1P. Process Biochem 38:49–56

    Article  CAS  Google Scholar 

  • Bidleman TF, Foreman WT (1987) Vapour-particle partitioning of semivolatile organic compounds. In: Hites RA, Eisenreich SJ (eds) Sources and fates of aquatic pollutants, American Chemical Society, Advances in Chemistry Series No. 216. American Chemical Society, New York, pp 27–56

    Chapter  Google Scholar 

  • Bidleman T, Jantunen L, Helm P, Brorstrom-Lunden E, Juntto S (2002) Chlordane enantiomers and temporal trends of chlordane isomers in Arctic air. Environ Sci Technol 36:539–544

    Article  CAS  Google Scholar 

  • Borchers A, Teuber SS, Keen CL, Gershwin ME (2010) Food safety. Clin Rev Allergy Immunol 39:95–141

    Article  CAS  Google Scholar 

  • Brown MB, Bush B, Rhee GY, Shane L (1988) PCB dechlorination in Hudson River sediment. Science 240:1674–1676

    Article  CAS  Google Scholar 

  • Buser HR, Muller MD (1995) Isomer and enantioselective degradation of hexachlorocyclohexane isomers in sewage-sludge under anaerobic conditions. Environ Sci Technol 29:664–672

    Article  CAS  Google Scholar 

  • Cabrerizo A, Dachs J, Moeckel C, Ojeda MJ, Caballero G, Barcelo D, Jone KV (2011) Factors influencing the soil-air partitioning and the strength of soils as a secondary source of polychlorinated biphenyls to the atmosphere. Environ Sci Technol 45(11):4785–4792

    Article  CAS  Google Scholar 

  • Cajthmal T, Moder M, Kacer P, Sasek V, Popp P (2002) Study of fungal degradation products of PAHs using gas chromatography with ion trap mass spectrometry detection. J Chromatogr A 974:213–222

    Article  Google Scholar 

  • Campbell S, Arakaki AS, Li QL (2009) Phytoremediation of heptachlor and heptachlor epoxide in soil by Cucurbitaceae. Int J Phytoremediation 11:28–38

    Article  CAS  Google Scholar 

  • Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–30. https://doi.org/10.1201/b18218-2

    Chapter  Google Scholar 

  • Chang BV, Liu WG, Yuan SY (2001) Microbial dechlorination of three PCB congeners in river sediment. Chemosphere 45:849–856

    Article  CAS  Google Scholar 

  • Chen CH, Qian Y, Chen Q, Tao CH, Li CH, Li Y (2011) Evaluation of pesticide residues in fruits and vegetables from **amen, China. Food Control 22:1114–1120

    Article  CAS  Google Scholar 

  • Coleman PF, Dolinger PM (1982) Endosulfan monograph number four: environmental health evaluations of California restricted pesticides. Prepared by Peter M. Dolinger Associates, Menlo Park

    Google Scholar 

  • Cortes-Espinosa DV, Fernandez-Perrino FJ, Arana-Cuenca A, Esparza-Garcıa F, Loera O, Rodrıguez-Vazquez R (2006) Selection and identification of fungi isolated from sugarcane bagasse and their application for phenanthrene removal from soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:475–486

    Article  CAS  Google Scholar 

  • Crinnion WJ (2011) Polychlorinated biphenyls: persistent pollutants with immunological, neurological, and endocrinological consequences. Altern Med Rev 16:5–13

    Google Scholar 

  • Devi NL, Yadav IC, Raha P, Shihua Q, Dan Y (2015) Spatial distribution source apportionment and ecological risk assessment of residual organochlorine pesticides in the Himalayas. Environ. Sci Pollut Res 22:20154–20166

    Article  CAS  Google Scholar 

  • Devi NL, Yadav IC, Shihua Q, Dan Y, Zhang G, Raha P (2016) Environmental carcinogenic polycyclic aromatic hydrocarbons in soil from Himalayas, India: implications for spatial distribution, sources apportionment and risk assessment. Chemosphere 144:493–502

    Article  CAS  Google Scholar 

  • Furukawa K, Fujihara H (2008) Microbial degradation of polychlorinated biphenyls: biochemical and molecular features. J Biosci Bioeng 105:433–449

    Article  CAS  Google Scholar 

  • Garban B, Blanchoud H, Motelav-Masei A, Ollivon D (2002) Atmospheric bulk precipitation of polycyclic aromatic hydrocarbons on to France at typical environmental sites. Atmos Environ 36:5395–5403

    Article  CAS  Google Scholar 

  • Gautam S, Kaithwas G, Bharagava RN, Saxena G (2017) Pollutants in tannery wastewater, pharmacological effects and bioremediation approaches for human health protection and environmental safety. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 369–396. https://doi.org/10.1201/9781315173351-14

    Chapter  Google Scholar 

  • Gevao B, Hamilton-Taylor J, Jones KC (2000) Towards a complete mass balance model for PCB and PAH in a small rural lake, Cumbria, UK. Limnol Oceanogr 45:881–894

    Article  CAS  Google Scholar 

  • GFEA-U (2007) Endosulfan. Draft Dossier prepared in support of a proposal of endosulfan to be considered as a candidate for inclusion in the CLRTAP protocol on persistent organic pollutants. German Federal Environment Agency – Umweltbundesamt, Berlin

    Google Scholar 

  • Golomb D, Barry E, Fisher G, Varanusupakul P, Koleda M, Rooney T (2001) Atmospheric deposition of polycyclic aromatic hydrocarbons near New England coastal waters. Atmos Environ 35:6245–6258

    Article  CAS  Google Scholar 

  • Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J 336:386–396. https://doi.org/10.1016/j.cej.2017.12.029

    Article  CAS  Google Scholar 

  • Halsall CJ, Gevao B, Howsam M, Lee RGM, Ockenden WA, Jones KC (1999) Temperature dependence of PCBs in the UK atmosphere. Atmos Environ 33(4):541–552

    Article  CAS  Google Scholar 

  • Halsall CJ, Sweetman AJ, Barrie LA, Jones KC (2001) Modelling the behaviour of PAH during atmospheric transport from the UK to the Arctic. Atmos Environ 35:255–267

    Article  CAS  Google Scholar 

  • Hilber I, Mäder P, Schulin R, Wyss GS (2008) Survey of organochlorine pesticides in horticultural soils and there grown Cucurbitaceae. Chemosphere 73:954–961

    Article  CAS  Google Scholar 

  • Howsam M, Jones KC (1998) Sources of PAHs in the environment. Handbook of chemistry, vol 31. Springer, Berlin, pp 137–174

    Google Scholar 

  • IPCS (1998) International chemical safety card—dieldrin, ICSC 0787. World Health Organization/International Programme on Chemical Safety, Geneva

    Google Scholar 

  • Iwata H, Tanabe S, Sakai N, Nishimura A, Tatsukawa R (1994) Geographical distribution of persistent organochlorines in air, water and sediments from Asia and Oceania, and their implications for global redistribution from lower latitudes. Environ Pollut 85:15–33

    Article  CAS  Google Scholar 

  • Johgenson JE (2001) Aldrin and dieldrin: a review of research on their production, environmental deposition and fate, bioaccumulation, toxicology, and epidemiology in the United States. Environ Health Perspect 109:113–139

    Google Scholar 

  • Johnsen RE (1976) DDT metabolism in microbial systems. Pestic Rev 61:1–28

    CAS  Google Scholar 

  • Kallenborn R, Oehme M, Wynn-Williams DD, Schlabach M, Harris J (1998) Ambient air levels and atmospheric long range transport of persistence organochlorines to Signy island, Antarctica. Sci Total Environ 220:167–180

    Article  CAS  Google Scholar 

  • Khalili NR, Scheff PA, Holsen TM (1995) PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels and wood combustion emissions. Atmos Environ 29:533–542

    Article  CAS  Google Scholar 

  • Kishor R, Bharagava RN, Saxena G (2018) Industrial wastewaters the major sources of dye contamination in the environment, ecotoxicological effects, and bioremediation approaches. In: Bharagava RN (ed) Recent advances in environmental management, 1st edn. CRC Press, Taylor & Francis, pp 1–25

    Google Scholar 

  • Klecka G, Boethling B, Franklin J, Grady L, Graham D, Howard PH, Kannan K, Larson RJ, Mackay D, Muir D, van de Meent D (eds) (2000) Evaluation of persistence and long-range transport of organic chemicals in the environment. SETAC Press, Pensacola

    Google Scholar 

  • Kuhn EP, Sulflita JM (1986) Dehalogenation of pesticides by anaerobic microorganisms in soils and groundwater-a review. In: Reactions and movement of organic chemicals in soil. SSSA special publication no. 22. Soil Science Society of America and American Society of Agronomy, Madison, pp 111–180

    Google Scholar 

  • Kutz FW, Wood PH, Bottimore DP (1991) Organochlorine pesticides and polychlorinated biphenyls in human adipose tissue. Rev Environ Contam Toxicol 120:1–82

    Article  CAS  Google Scholar 

  • Lai R, Saxena DM (1982) Accumulation, metabolism, and effects of organochlorine insecticides on microorganisms. Microbiol Rev 46:95–127

    Google Scholar 

  • Lee RGM, Hung H, Mackay D, Jones KC (1998) Measurement and modelling of the diurnal cycling of atmospheric PCBs and PAHs. Environ Sci Technol 32:2172–2179

    Article  CAS  Google Scholar 

  • Lichtenstein EP, Schulz KR, Skrentny RF, Stitt PA (1965) Insecticidal residues in cucumbers and alfalfa grown on aldrin- or heptachlor-treated soils. J Econ Entomol 58:742–746

    Article  CAS  Google Scholar 

  • Ljunggren SA, Helmfrid I, Salihovic S, van Bavel B, Wingren G, Lindahl M, Karlsson H (2014) Persistent organic pollutants distribution in lipoprotein fractions in relation to cardiovascular disease and cancer. Environ Int 65:93–99

    Article  CAS  Google Scholar 

  • Lunney AI, Zeeb BA, Reimer KJ (2004) Uptake of weathered DDT in vascular plants: potential for phytoremediation. Environ Sci Technol 38:6147–6154

    Article  CAS  Google Scholar 

  • Machin-Ramirez C, Morales D, Martinez-Morales F, Okoh AI, Trejo-Hernandez MR (2010) Benzo[a]pyrene removal by axenic- and co-cultures of some bacterial and fungal strains. Int Biodeterior Biodegrad 64:538–544

    Article  CAS  Google Scholar 

  • Mandalakis M, Berresheim H, Stephanou EG (2003) Direct evidence for destruction of polychlorobiphenyls by OH radicals in the subtropical troposphere. Environ Sci Technol 37:542–547

    Article  CAS  Google Scholar 

  • Matsumoto E, Kawanaka Y, Yun SJ, Oyaizu H (2009) Bioremediation of the organochlorine pesticides, dieldrin and endrin and their occurrence in the environment. Appl Microbiol Biotechnol 84:205–216

    Article  CAS  Google Scholar 

  • Mattina MJI, Eitzer BD, Iannucci-Berger W, Lee WY, White JC (2004) Plant uptake and translocation of highly weathered, soilbound technical chlordane residues: data from field and rhizotron studies. Environ Toxicol Chem 23:2756–2762

    Article  CAS  Google Scholar 

  • Meijer SN, Shoeib M, Jantunen LMM, Jones KC, Harner T (2003) Air-soil exchange of organochlorine pesticides in agricultural soils. 1. Field measurements using a novel in situ sampling device. Environ Sci Technol 37(7):1292–1299

    Article  CAS  Google Scholar 

  • Metcalf RL (1995) Insect control technology. In: Kroschwitz J, Howe-Grant M (eds) Kirk-Othmer encyclopedia of chemical technology, vol 14. Wiley, New York, pp 524–602

    Google Scholar 

  • Migaszewske ZM (1999) Determining organic compound ratios in soils and vegetation of the Holy Cross Mts, Poland. Water Air Soil Pollut 111:123–138

    Article  Google Scholar 

  • Montgomery JH (1993) Agrochemicals desk reference. Environmental data. Lewis Publ, Chelsea, p 672

    Google Scholar 

  • Mousa MA, Quensen JF, Chou K (1996) Microbial dechlorination alleviates inhibitory effects of PCBs on mouse gamete fertilization in vitro. Environ Sci Technol 30:2087–2092

    Article  CAS  Google Scholar 

  • Otani T, Seike N, Sakata Y (2007) Differential uptake of dieldrin and endrin from soil by several plant families and Cucurbita genera. Soil Sci Plant Nutr 53:86–94

    Article  CAS  Google Scholar 

  • Pankow JF (1987) Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere. Atmos Environ 21:2275–2283

    Article  CAS  Google Scholar 

  • Passarini MRZ, Rodrigues MVN, da Silva M, Sette LD (2011) Marine-derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Mar Pollut Bull 62:364–370

    Article  CAS  Google Scholar 

  • Petriello MC, Newsome B, Hennig B (2014) Influence of nutrition in PCB-induced vascular inflammation. Environ Sci Pollut Res Int 21(10):6410–6418

    Article  CAS  Google Scholar 

  • Pfaender FK, Alexander M (1972) Extensive microbial degradation of DDT in vitro and DDT metabolism by natural communities. J Agric Food Chem 20:842–846

    Article  CAS  Google Scholar 

  • Pradhan SP, Conrad JR, Paterek JR, Srivastava VJ (1998) Potential of phytoremediation for treatment of PAHs in soil at MGP sites. Soil Sediment Contam 7(4):467–480

    Article  CAS  Google Scholar 

  • Quensen JF, Boyd SA, Tiedje JM (1992) Expected dioxin-like toxicity reduction as a result of the dechlorination of Aroclors. In: General electric company research and development program for the destruction of PCBs, eleventh progress report. General Electric Corporate Research and Development, Schenectady, pp 189–196.

    Google Scholar 

  • Quensen JF, Mueller SA, Jain MK (1998) Reductive dechlorination of DDE to DDMU in marine sediment microcosms. Science 280:722–724

    Article  CAS  Google Scholar 

  • Rehman K, Noll HP, Steinberg CEW, Kettrup AA (1998) Pyrene metabolism by Mycobacterium sp. Strain KR2. Chemosphere 36:2977–2992

    Article  CAS  Google Scholar 

  • Romero MC, Cazau MC, Giorgieri S, Arambarri AM (1998) Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environ Pollut 101:355–359

    Article  CAS  Google Scholar 

  • Russel K (2005) The use and effectiveness of phytoremediation to treat persistent organic pollutants. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Saxena G, Bharagava RN (2015) Persistent organic pollutants and bacterial communities present during the treatment of tannery wastewater. In: Chandra R (ed) Environmental waste management, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 217–247. https://doi.org/10.1201/b19243-10

    Chapter  Google Scholar 

  • Saxena G, Bharagava RN (2016) Ram Chandra: advances in biodegradation and bioremediation of industrial waste. Clean Techn Environ Policy 18:979–980. https://doi.org/10.1007/s10098-015-1084-9

    Article  Google Scholar 

  • Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 23–56. https://doi.org/10.1201/9781315173351-3

    Chapter  Google Scholar 

  • Saxena G, Chandra R, Bharagava RN (2016) Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Rev Environ Contam Toxicol 240:31–69. https://doi.org/10.1007/398_2015_5009

    Article  CAS  Google Scholar 

  • Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D (1996) Degradation of pyrene, benz[a]anthracene and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl Environ Microbiol 62:13–19

    CAS  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Sharpe RM, Skakkebaek NE (1993) Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet 341:1392–1395

    Article  CAS  Google Scholar 

  • Singh RP (2001) Comparison of organochlorine pesticide levels in soil and groundwater of Agra, India. Bull Environ Contam Toxicol 67:126–132

    Article  CAS  Google Scholar 

  • Singh KP, Malik A, Mohan D, Takroo R (2005) Distribution of persistent organochlo-rine pesticide residues in Gomti River, India. Bull Environ Contam Toxicol 74(1):146–154

    Article  CAS  Google Scholar 

  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9

    Article  CAS  Google Scholar 

  • Smith AG (1991) Chlorinated hydrocarbon insecticides. Classes of pesticides. In: Hayes WJ, Laws ER (eds) Handbook of pesticide toxicology. Academic, San Diego

    Google Scholar 

  • Smith MJ, Flowers TH, Duncan HJ, Alder J (2006) Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ Pollut 141:519–525

    Article  CAS  Google Scholar 

  • Subba Rao RV, Alexander M (1985) Bacterial and fungal co-metabolism of 1,1,1-trichloro-2,2-bis-(4-chlorophenyl) ethane (DDT) and its breakdown products. Appl Environ Microbiol 49:509–516

    CAS  Google Scholar 

  • Swaminathan MS (1975) ICAR operational research projects, purpose and approach. Indian Farming

    Google Scholar 

  • Sweetman AJ, Jones KC (2000) Declining PCB concentrations in the UK atmosphere: evidence and possible causes. Environ Sci Technol 34:863–869

    Article  CAS  Google Scholar 

  • Takagi K, Kataoka R, Yamazaki K (2011) Recent technology on bio-remediation of POPs and persistent pesticides. JARQ 45(2):129–136

    Article  CAS  Google Scholar 

  • Tanabe S, Tatsukawa R, Kawano M, Hidaka H (1982) Global distribution and atmospheric transport of chlorinated hydrocarbons: HCH (BHC) isomers and DDT compounds in the western Pacific, eastern Indian and Antarctic Oceans. J Ocean Turbul Jpn 38:137–148

    Article  CAS  Google Scholar 

  • Thomas JA (1995) Falling sperm counts. Lancet 346:636

    Google Scholar 

  • Trzesicka-Mlynarz D, Ward OP (1995) Degradation of polycyclic aromatic hydrocarbons

    Google Scholar 

  • UNEP (2006) The state of the marine environment: trends and processes. The Hague, The Netherlands

    Google Scholar 

  • US-EPA (2007) Note to reader. Endosulfan Readers Guide. November 16. EPA-HQ-OPP-2002-0262-0057. http://www.regulations.gov.

  • Vallack HW, Bakker DJ, Brandt I, Broström-Ludén E, Brouwer A, Bull KR, Gough C, Guardans R, Holoubek I, Jansson B, Koch R, Kuylenstierna J, Lecloux A, Mackay D, McCutcheon P, Mocarelli P, Taalman RDF (1998) Controlling persistent organic pollutants – what next? Environ Toxicol Pharmacol 6:143–175

    Article  CAS  Google Scholar 

  • Wan MT, Kuo J, Pasternak J (2005) Residues of endosulfan and other selected organochlorine pesticides in farm areas of the lower Fraser valley, British Columbia, Canada. J Environ Qual 34:1186–1193

    Article  CAS  Google Scholar 

  • Wang Z, Chen J, Qiao X, Yang P, Tian F, Huang L (2007) Distribution and sources of polycyclic aromatic hydrocarbons from urban to rural soils: a case study in Dalian. Chin Chemosphere 68:965–971

    Article  CAS  Google Scholar 

  • Wang X, Xue Y, Gong P, Yao T (2014) Organochlorine pesticides and polychlorinated biphenyls in Tibetan forest soil: profile distribution and processes. Environ Sci Pollut Res Int 21(3):1897–1904

    Article  CAS  Google Scholar 

  • Wania FM (1993) Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions. Ambio 22:10–18

    Google Scholar 

  • Wania F, Mackay D (1993) Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions. Ambio 22:10–18

    Google Scholar 

  • Wania F, Mackay D (1996) Tracking the distribution of persistent organic pollutants. Environ Sci Technol 30(9):390A–396A

    Article  CAS  Google Scholar 

  • Wania F, McLachlan MS (2001) Estimating the influence of forests on the overall fate of semivolatile organic compounds using a multimedia fate model. Environ Sci Technol 35:582–590

    Article  CAS  Google Scholar 

  • White JC (2001) Plant-facilitated mobilization and translocation of weathered 2, 2-bis(p-chlorophenyl)-1, 1-dichloroethylene (p, p′- DDE) from an agricultural soil. Environ Toxicol Chem 20:2047–2052

    CAS  Google Scholar 

  • White JC, Parrish ZD, Isleyen M, Gent MPN, Iannucci-Berger W, Eitzer BD, Kelsey JW, Mattina MI (2006) Influence of citric acid amendments on the availability of weathered PCBs to plant and earthworm species. Int J Phytoremediation 8:63–79

    Article  CAS  Google Scholar 

  • WHO (1979) DDT and its derivatives. Environmental health criteria. World Health Organization, Geneva, p 9

    Google Scholar 

  • Wu C, Luo Y, Gui T, Huang Y (2014) Concentrations and potential health hazards of organochlorine pesticides in shallow groundwater of Taihu lake region, China. Sci Total Environ 470–471:1047–1055

    Article  CAS  Google Scholar 

  • Ye B, Siddiqi MA, Maccubbin AE, Kumar S, Sikka HC (1996) Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. Environ Sci Technol 30:136–142

    Article  CAS  Google Scholar 

  • Zhang H, Jiang X, Lu L, **ao W (2015) Biodegradation of polychlorinated biphenyls (PCBs) by the novel identified cyanobacterium Anabaena PD1. PLoS One. https://doi.org/10.1371/journal.pone.0131450

    Article  CAS  Google Scholar 

  • Zhao G, Xu Y, Han G, Ling B (2006) Biotransfer of persistent organic pollutants from a large site in China used for the disassembly of electronic and electrical waste. Environ Geochem Health 28:341–351

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningombam Linthoingambi Devi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devi, N.L. (2020). Persistent Organic Pollutants (POPs): Environmental Risks, Toxicological Effects, and Bioremediation for Environmental Safety and Challenges for Future Research. In: Saxena, G., Bharagava, R. (eds) Bioremediation of Industrial Waste for Environmental Safety. Springer, Singapore. https://doi.org/10.1007/978-981-13-1891-7_4

Download citation

Publish with us

Policies and ethics

Navigation