Arsenic-Induced Oxidative Stress in Plants

  • Chapter
  • First Online:
Mechanisms of Arsenic Toxicity and Tolerance in Plants

Abstract

Oxidative stress is a common phenomenon in organisms that are exposed to arsenic (As), as well as many other abiotic or biotic stresses. This chapter describes the influence of As on the production of individual reactive oxygen species (ROS) in various pathways of a plant cell. Inorganic As(V) disrupts the phosphorylation metabolism, interfering with, inter alia, the flow of cellular energy. During As(V) to As(III) reduction, the electron leakage leads to ROS formation, and the accompanying redox-driven methylation contributes further to more ROS generation. Inorganic As(III) reacts with sulfhydryl groups of proteins, glutathione (GSH), and phytochelatins, affecting several important cellular functions including those related to the oxidative stress. The description of As toxicity includes the As-induced ROS reactions with macromolecules: lipid peroxidation and protein and nucleic acid damage. Some cellular processes are affected by As, e.g., As-induced ROS are involved in the activation of MAPK signaling cascades resulting in targeting transcription factors and the gene expression. Redox imbalances influence the enzymatic antioxidant system and mobilize the cell to synthesize low-molecular-weight antioxidants which are important in the prevention of ROS-induced damage. Other metabolic consequences of As-induced oxygen stress in the plant cell are also described in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abercrombie JM, Halfhill MD, Ranjan P, Rao MR, Saxton AM, Yuan JS, Stewart CN (2008) Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol 8:87. https://doi.org/10.1186/1471-2229-8-87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal GK, Tamogami S, Iwahashi H et al (2003) Transient regulation of jasmonic acid-inducible rice MAP kinase gene (OsBWMK1) by diverse biotic and abiotic stresses. Plant Physiol Biochem 41(4):355–361. https://doi.org/10.1016/S0981-9428(03)00030-5

    Article  CAS  Google Scholar 

  • Ahsan N, Lee DG, Alam I, Kim PJ, Lee JJ, Ahn YO, Kwak SS, Lee IJ, Bahk JD, Kang KY, Renaut J, Komatsu S, Lee BH (2008) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 8:3561–3576

    Article  CAS  PubMed  Google Scholar 

  • Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry 70:200–214

    CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signaling molecule in plant stress responses. Plant Sci 172:876–887

    Article  CAS  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  CAS  PubMed  Google Scholar 

  • Baker A, Graham AI (eds) (2002) Plant peroxisomes: biochemistry, cell biology and biotechnological applications. Kluwer, Dordrecht

    Google Scholar 

  • Barchowsky A, Dudek EJ, Treadwell MD, Wetterhahn KE (1996) Arsenic induces oxidant stress and NF kappa B activation in cultured aortic endothelial cells. Free Radic Biol Med 21:783–790

    Article  CAS  PubMed  Google Scholar 

  • Bela K, HorvĂĄth E, GallĂ© A, Szabados L, Tari I, CsiszĂĄr J (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol 176:192–201

    Article  CAS  PubMed  Google Scholar 

  • Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129:1642–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergquist ER, Fischer RJ, Sugden KD, Martin BD (2009) Inhibition by methylated organo-arsenicals of the respiratory 2-oxo-acid dehydrogenases. J Organomet Chem 694:973–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bethke PC, Jones RL (2001) Cell death of barley aleurone protoplasts is mediated by reactive oxygen species. Plant J 25:19–29

    Article  CAS  PubMed  Google Scholar 

  • Betteridge DJ (2000) What is oxidative stress? Metabolism 49(2 suppl 1):3–8

    Article  CAS  PubMed  Google Scholar 

  • Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM, Bolwell GP (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47:851–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleeker PM, Schat H, Vooijs R et al (2003) Mechanisms of arsenate tolerance in Cytisus striatus. New Phytol 157:33–381

    Article  CAS  PubMed  Google Scholar 

  • Bleeker PM, Hakvoort HWJ, Bliek M et al (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45:917–929

    Article  CAS  PubMed  Google Scholar 

  • Boradia VM, Raje M, Raje CI (2014) Protein moonlighting in iron metabolism: glyceraldehyde-3-phosphate dehyrogenase (GAPDH). Biochem Soc Trans 42:1796–1801

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Ma LQ, Tub C (2004) Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environ Pollut 128:317–325

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarty N (2015) Introduction to arsenic toxicity. In: Chakrabarty N (ed) Arsenic toxicity. CRC Press, Boca Raton, pp 3–14

    Chapter  Google Scholar 

  • Chakrabarty D, Trivedi PK, Misra P et al (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74:688–702

    Article  CAS  PubMed  Google Scholar 

  • Chan Z, Yokawa K, Kim W-Y et al (2016) Editorial: ROS regulation during plant abiotic stress responses. Front Plant Sci 7:1536

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen YC, Lin-Shiau SY, Lin JK (1998) Involvement of reactive oxygen species and caspase 3 activation in arsenite induced apoptosis. J Cell Physiol 177:324–333

    Article  CAS  PubMed  Google Scholar 

  • Chou WC, Jie C, Kenedy AA et al (2004) Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proc Natl Acad Sci U S A 101:4578–4583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury S, Panda P, Sohoo L et al (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8:e23681. https://doi.org/10.4161/psb.23681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleland RE, Grace SC (1999) Voltometric detection of superoxide production by photosystem II. FEBS Lett 457:348–352

    Article  CAS  PubMed  Google Scholar 

  • Cozzolino V, Pigna M, Di Meo V et al (2010) Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth of Lactuca sativa L. and arsenic and phosphorus availability in an arsenic polluted soil under non-sterile conditions. Appl Soil Ecol 45:262–268

    Article  Google Scholar 

  • Czech V, Czövek P, Fodor J et al (2008) Investigation of arsenate phytotoxicity in cucumber plants. Acta Biol Szeged 52:79–80

    Google Scholar 

  • Dave R, Mishra A, Tripathi RD et al (2013) Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice (Oryza sativa L.) genotypes. J Hazard Mater 262:1123–1131

    Article  CAS  PubMed  Google Scholar 

  • Delnomdedieu M, Basti MM, Otvos JD et al (1994) Reduction and binding of arsenate and dimethylarsinate by glutathione – a magnetic resonance study. Chem Biol Interact 90:139–155

    Article  CAS  PubMed  Google Scholar 

  • Desikan R, Neill SJ, Hancock JT (2000) Hydrogen peroxide-induced gene expression in Arabidopsis thaliana. Free Radic Biol Med 28:773–778

    Article  CAS  PubMed  Google Scholar 

  • Desikan R, Mackerness SA-H, Hancock JT et al (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dho S, Camusso W, Mucciarelli M et al (2010) Arsenate toxicity on the apices of Pisum sativum L. seedling root: effect on mitotic activity, chromatin integrity and microtubules. Environ Exp Bot 69:17–23

    Article  CAS  Google Scholar 

  • Ding W, Hudson LG, Liu KJ (2005) Inorganic arsenic compounds cause oxidative damage to DNA and protein by inducing ROS and RNS generation in human keratinocytes. Mol Cell Biochem 279:105–112

    Article  CAS  PubMed  Google Scholar 

  • Domingos P, Prado AM, Wong A (2015) Nitric oxide: a multitasked signaling gas in plants. Mol Plant 8:506–520

    Article  CAS  PubMed  Google Scholar 

  • Duan G-L, Hu Y, Liu Wen-Ju et al (2011) Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. Environ Exp Bot 71:416–421

    CAS  Google Scholar 

  • Duman F, Ozturk F, Aydin Z (2010) Biological responses of duckweed (Lemna minor L.) exposed to the inorganic arsenic species As(III) and As(V): effects of concentration and duration of exposure. Ecotoxicology 19:983–993

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi S, Tripathi RD, Tripathi P et al (2010) Arsenate exposure affects amino acids, mineral nutrient status and antioxidants in rice (Oryza sativa L.) genotypes. Environ Sci Technol 44:9542–9549

    Article  CAS  PubMed  Google Scholar 

  • Ellis DR, Gumaelius L, Indriolo E et al (2006) A novel arsenate reductase from the arsenic hyperaccumulating Pteris vittata. Plant Physiol 141:1544–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elstner EF (1991) Mechanism of oxygen activation in different compartments of plant cells. In: Pell EJ, Steffen KL (eds) Active oxygen/oxidative stress and plant metabolism. American Society of Plant Physiologists, Rockville, pp 13–25

    Google Scholar 

  • Erb TJ, Kiefer P, Hattendorf B et al (2012) GFAJ-1 is an arsenate-resistant, phosphate-dependent organism. Science 337:467–470

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Diez C, Miguel V, Mennerich D et al (2015) Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 6:183–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farnese FS, Oliveira JA, Paiva EAS et al (2017) The involvement of nitric oxide in integration of plant physiological and ultrastructural adjustments in response to arsenic. Front Plant Sci 8:516. https://doi.org/10.3389/fpls.2017.00516

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooq MA, Gill RA, Ali B et al (2016) Subcellular distribution, modulation of antioxidant and stress-related genes response to arsenic in Brassica napus L. Ecotoxicology 25:350–366

    Article  CAS  PubMed  Google Scholar 

  • Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:1–18

    Article  CAS  Google Scholar 

  • Flora SJS, Bhadauria S, Kannan GM et al (2007) Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: a review. J Environ Biol 28:333–347

    CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutase. Annu Rev Biochem 64:97–112

    Article  CAS  PubMed  Google Scholar 

  • Galvez-Valdivieso G, Mullineaux PM (2010) The role of reactive oxygen species in signalling from chloroplasts to the nucleus. Physiol Plant 138:430–439

    Article  CAS  PubMed  Google Scholar 

  • Geng CN, Zhu YG, Hu Y et al (2006) Arsenate causes differential acute toxicity to two P-deprived genotypes of rice seedlings (Oryza sativa L.). Plant Soil 279:297–306

    Article  CAS  Google Scholar 

  • Ghelfi A, Gaziola SA, Cia MC et al (2011) Cloning, expression, molecular modelling and docking analysis of glutathione transferase from Saccharum officinarum. Ann Appl Biol 159:267–280

    Article  CAS  Google Scholar 

  • Ghosh S, Shaw AK, Azahar I et al (2016) Arsenate (AsV) stress response in maize (Zea mays L.). Environ Exp Bot 130:53–67

    Article  CAS  Google Scholar 

  • Gresser MJ (1981) ADP-arsenate. Formation by submitochondrial particles under phosphorylating conditions. J Biol Chem 256:5981–5983

    CAS  PubMed  Google Scholar 

  • Gross F, Durner J, Gaupels F (2013) Nitric oxide, antioxidants and prooxidants in plant defence responses. Front Plant Sci 4:419

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta M, Sharma P, Sarin NB et al (2009) Differential response of arsenic stress in two varieties of Brassica juncea L. Chemosphere 74:1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Gupta DK, Inouhe M, RodrĂ­guez-Serrano M et al (2013) Oxidative stress and arsenic toxicity: role of NADPH oxidases. Chemosphere 90:1987–1996

    Article  CAS  PubMed  Google Scholar 

  • Gurr JR, Liu F, Lynn S et al (1998) Calcium dependent nitric oxide production is involved in arsenite induced micronuclei. Mutat Res 416:137–148

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (1994) Free radicals, antioxidants and human disease: curiosity, cause or consequence. Lancet 344:721–724

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (1986) Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys 246:501–514

    Article  CAS  PubMed  Google Scholar 

  • Hancock J, Desikan R, Neill S (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29:345–349

    Article  CAS  PubMed  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Meharg A (2001a) Copper and-arsenic induced oxidative stress in Holcus lanatus L. cloned with differential sensitivity. Plant Cell Environ 24:713–722

    Article  CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Vooijs R et al (2001b) Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol 126:299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyno E, Mary V, Schopfer P et al (2011) Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes. Planta 234:35–45

    Article  CAS  PubMed  Google Scholar 

  • Hosseini MJ, Shaki F, Ghazi-Khansari M et al (2013) Toxicity of arsenic (III) on isolated liver mitochondria: a new mechanistic approach. Iran J Pharm Res 12:121–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, von Rad U, Durner J (2002) Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 215:914–923

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Qingdong K, Costa M et al (2004) Molecular mechanisms of arsenic carcinogenesis. Mol Cell Biochem 255:57–66

    Article  CAS  PubMed  Google Scholar 

  • Huang TL, Nguyen QT, Fu SF et al (2012) Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Mol Biol 80:587–608

    Article  CAS  PubMed  Google Scholar 

  • Hunt KM, Srivastava RK, Elmets CA et al (2014) The mechanistic basis of arsenicosis: pathogenesis of skin cancer. Cancer Lett 354:211–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam E, Khan MT, Irem S (2015) Biochemical mechanisms of signaling: perspectives in plants under arsenic stress. Ecotoxicol Environ Saf 114:126–133

    Article  CAS  PubMed  Google Scholar 

  • Jena NR (2012) DNA damage by reactive species: mechanisms, mutation and repair. J Biosci 37:503–517

    Article  CAS  PubMed  Google Scholar 

  • ** J-W, Xu Y-F, Huang Y-F (2010) Protective effect of nitric oxide against arsenic-induced oxidative damage in tall fescue leaves. Afr J Biotechnol 9:1619–1627

    Article  CAS  Google Scholar 

  • Jomova K, Jenisova Z, Feszterova M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107

    CAS  PubMed  Google Scholar 

  • Jonak C, Okresz L, Bogre L et al (2002) Complexity, cross talk and integration of plant MAP kinase signaling. Curr Opin Plant Biol 5:415–424

    Article  CAS  PubMed  Google Scholar 

  • Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan I, Ahmad A, Iqbal M (2009) Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotoxicol Environ Saf 72:626–634

    Article  CAS  PubMed  Google Scholar 

  • Kiffin R, Bandyopadhyay U, Cuervo AM (2006) Oxidative stress and autophagy. Antioxid Redox Signal 8:152–162

    Article  CAS  PubMed  Google Scholar 

  • Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98:551–564

    Article  CAS  PubMed  Google Scholar 

  • Kröncke KD, Klotz LO (2009) Zinc fingers as biologic redox switches? Antioxid Redox Signal 11:1015–1027

    Article  PubMed  CAS  Google Scholar 

  • Kumagai Y (2009) Fusion of field and laboratory studies on the investigation of arsenic. Yakugaku Zasshi 129:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Kumagai Y, Sumi D (2007) Arsenic: signal transduction, transcription factor, and biotransformation involved in cellular response and toxicity. Annu Rev Pharmacol Toxicol 47:243–262

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Dubey RS, Tripathi RD (2015) Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ Int 74:221–230

    Article  CAS  PubMed  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM et al (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamattina L, Garcia-Mata C, Graziano M et al (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  CAS  PubMed  Google Scholar 

  • Lau A, Zheng Y, Tao S et al (2013) Arsenic inhibits autophagic flux activating the Nrf2-Keap1 pathway in a p62-dependent manner. Mol Cell Biol 33:2436–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Dhankher OP, Carreira L et al (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:787–1797

    Google Scholar 

  • Li WX, Chen TB, Huang ZC et al (2006) Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L. Chemosphere 62:803–809

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260

    Article  CAS  PubMed  Google Scholar 

  • Litwin I, Bocer T, Dziadkowiec D et al (2013) Oxidative stress and replication-independent DNA breakage induced by arsenic in Saccharomyces cerevisiae. PLoS Genet 9:e1003640. https://doi.org/10.1371/journal.pgen.1003640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LĂłpez-Huertas E, Corpas FJ, Sandalio LM et al (1999) Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. Biochem J 337:531–536

    Article  PubMed  PubMed Central  Google Scholar 

  • Lushchak VI, Semchuk NM (2012) Tocopherol biosynthesis: chemistry, regulation and effects of environmental factors (Review). Acta Physiol Plant 34:1607–1628

    Article  CAS  Google Scholar 

  • Lynn S, Gurr JR, Lai HT et al (2000) NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Circ Res 86:514–519

    Article  CAS  PubMed  Google Scholar 

  • MĂ€der M, Ungemach J, Schloss P (1980) The role of peroxidase isozyme groups of Nicotiana tabacum in hydrogen peroxide formation. Planta 147:467–470

    Article  PubMed  Google Scholar 

  • Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187

    Article  CAS  Google Scholar 

  • Mascher R, Lippman B, Holzinger S et al (2002) Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci 163:961–969

    Article  CAS  Google Scholar 

  • Meadows R (2014) How plants control arsenic accumulation. PLoS Biol 12:e1002008. https://doi.org/10.1371/journal.pbio.1002008

    Article  PubMed  PubMed Central  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    CAS  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N et al (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Mokgalaka-Matlala NS, Flores-Tavizon E, Castillo-Michel H (2009) Arsenic tolerance in mesquite (Prosopis sp.): low molecular weight thiols synthesis and glutathione activity in response to arsenic. Plant Physiol Biochem 47:822–826

    Article  CAS  PubMed  Google Scholar 

  • Moon H, Lee B, Choi G et al (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci U S A 100:358–363

    Article  CAS  PubMed  Google Scholar 

  • Mucha S, Berezowski M, Markowska K (2017) Mechanisms of arsenic toxicity and transport in microorganisms. Adv Microbiol 56:88–99

    Google Scholar 

  • Muller-Delp JM, Gurovich AN, Christou DD et al (2012) Redox balance in the aging microcirculation: new friends, new foes, and new clinical directions. Microcirculation 19:19–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  • Mylona PV, Polidoros AN, Scandalios JG (1998) Modulation of antioxidant responses by arsenic in maize. Free Radic Biol Med 25:576–585

    Article  CAS  PubMed  Google Scholar 

  • Naranmandura H, Xu S, Sawata T et al (2011) Mitochondria are the main target organelle for trivalent monomethylarsonous acid (MMAIII)-induced cytotoxicity. Chem Res Toxicol 24:1094–1103

    Article  CAS  PubMed  Google Scholar 

  • Nath S, Panda P, Mishra S et al (2014) Arsenic stress in rice: redox consequences and regulation by iron. Plant Physiol Biochem 80:203–210

    Article  CAS  PubMed  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: kee** active oxygen under control. Annu Rev Plant Physiol 49:249–279

    Article  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S et al (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35(2):454–484. https://doi.org/10.1111/j.1365-3040.2011.02400.x

    Article  CAS  Google Scholar 

  • Norton GJ, Lou-Hing DE, Meharg AA et al (2008) Rice-arsenate interaction in hydroponics: whole genome transcriptional analysis. J Exp Bot 59:2267–22761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nott A, Jung H-S, Koussevitzky S et al (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759

    Article  CAS  PubMed  Google Scholar 

  • Oz MT, Eyidogan F, Yucel M et al (2015) Functional role of nitric oxide under abiotic stress conditions. In: Khan M, Mobin M, Mohammad F, Corpas F (eds) Nitric oxide action in abiotic stress responses in plants. Springer, Cham, pp 21–41

    Google Scholar 

  • Ozyigit II, Filiz E, Vatansever R et al (2016) Identification and comparative analysis of H2O2 -scavenging enzymes (ascorbate peroxidase and glutathione peroxidase) in selected plants employing bioinformatics approaches. Front Plant Sci 7:301. https://doi.org/10.3389/fpls.2016.00301

    Article  PubMed  PubMed Central  Google Scholar 

  • Padmanabhan MS, Dinesh-Kumar SP (2010) All hands on deck – the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity. Mol Plant-Microbe Interact 23:1368–1380

    Article  CAS  PubMed  Google Scholar 

  • Palmieri MC, Sell S, Huang X et al (2008) Nitric oxide-responsive genes and promotes in Arabidopsis thaliana: a bioinformatics approach. J Exp Bot 59:177–186

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Rai R, Rai LC (2015) Biochemical and molecular basis on arsenic toxicity and tolerance in microbes and plants. In: Flora SJS (ed) Handbook of arsenic toxicology. Academic, Oxford, pp 641–655

    Google Scholar 

  • PavlĂ­k M, PavlĂ­kovĂĄ D, StaszkovĂĄ L et al (2010) The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. Ecotoxicol Environ Saf 73:1309–1313

    Article  CAS  PubMed  Google Scholar 

  • Pfannschmidt T, Schutze K, Fey V (2003) Chloroplast redox control of nuclear gene expression – a new class of plastid signals in interorganellar communication. Antioxid Redox Signal 5:95–101

    Article  CAS  PubMed  Google Scholar 

  • Price AH, Taylor A, Ripley SJ et al (1994) Oxidative signals in tobacco increase cytosolic calcium. Plant Cell Online 6:1301–1310

    Article  CAS  Google Scholar 

  • Qi Y, Li H, Zhang M et al (2014) Autophagy in arsenic carcinogenesis. Exp Toxicol Pathol 66:163–168

    Article  CAS  PubMed  Google Scholar 

  • Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic–phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raab A, Schat H, Meharg A et al (2005) Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic–phytochelatin complexes during exposure to high arsenic concentrations. New Phytol 168:551–558

    Article  CAS  PubMed  Google Scholar 

  • Rao KP, Vani G, Kumar K et al (2011) Arsenic stress activates MAP kinase in rice roots and leaves. Arch Biochem Biophys 506:73–82

    Article  CAS  PubMed  Google Scholar 

  • Rasmusson AG, Geisler DA, MĂžller IM (2008) The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion 8:47–60

    Article  CAS  PubMed  Google Scholar 

  • Rathinasabapathi B, Wu S, Sundaram S et al (2006) Arsenic resistance in Pteris vittata L.: identification of a cytosolic triosephosphate isomerase based on cDNA expression cloning in Escherichia coli. Plant Mol Biol 62:845–857

    Article  CAS  PubMed  Google Scholar 

  • Reaves ML, Sinha S, Rabinowitz JD et al (2012) Absence of detectable arsenate in DNA from arsenate-grown GFAJ-1 cells. Science 337:470–473

    Article  CAS  PubMed  Google Scholar 

  • Requejo R, Tena M (2005) Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochemistry 66:1519–1528

    Article  CAS  PubMed  Google Scholar 

  • Sahay S, Gupta M (2017) An update on nitric oxide and its benign role in plant responses under metal stress. Nitric Oxide 67:39–52

    Article  CAS  PubMed  Google Scholar 

  • SĂĄnchez-Bermejo E, Castrillo G, del Llano B et al (2014) Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. Nat Commun. https://doi.org/10.1038/ncomms5617

  • Sandalio L, RodrĂ­guez-Serrano M, Gupta D et al (2012) Reactive oxygen species and nitric oxide in plants under cadmium stress: from toxicity to signaling. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 199–215

    Chapter  Google Scholar 

  • Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmöger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801

    Article  PubMed  PubMed Central  Google Scholar 

  • Shapiguzov A, Vainonen JP, Wrzaczek M (2012) ROS-talk – how the apoplast, the chloroplast, and the nucleus get the message through. Front Plant Sci 3:292. https://doi.org/10.3389/fpls.2012.00292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma I (2012) Arsenic induced oxidative stress in plants. Biologia 67:447–453

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  CAS  Google Scholar 

  • Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255:67–78

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Wang G, Wang Y et al (2005) Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide 13:1–9

    Article  CAS  PubMed  Google Scholar 

  • Shri M, Kumar S, Chakrabarty D et al (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedling. Ecotoxicol Environ Saf 72:1102–1110

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248:447. https://doi.org/10.1007/s00709-010-0206-9

    Article  CAS  PubMed  Google Scholar 

  • Simola LK (1997) The effect of lead, cadmium, arsenate and fluoride ions on the growth and fine structure of Sphagnum nemoreum in aseptic culture. Can J Bot 90:375–405

    Google Scholar 

  • Ć imonovičovĂĄ M, TamĂĄs L, HuttovĂĄ J, MistrĂ­k I (2004) Effect of aluminum on oxidative stress related enzymes activities in barley roots. Biol Plant 48:261–266

    Article  Google Scholar 

  • Singh N, Ma LQ, Shrivastava M et al (2006) Metabolic adaptation to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant Sci 170:274–282

    Article  CAS  Google Scholar 

  • Singh HP, Batish DR, Kohali RK et al (2007) Arsenic induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul 53:65–73

    Article  CAS  Google Scholar 

  • Singh HP, Kaur S, Batish DR et al (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide 20:289–297

    Article  CAS  PubMed  Google Scholar 

  • Singh AP, Dexit G, Kumar A (2016) Nitric oxide alleviated arsenic toxicity by modulation of antioxidants and thiol metabolism in rice (Oryza sativa L.). Front Plant Sci 6:1272. https://doi.org/10.3389/fpls.2015.01272

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh S, Sounderajan S, Kumar K et al (2017) Investigation of arsenic accumulation and biochemical response of in vitro developed Vetiveria zizanoides plants. Ecotoxicol Environ Saf 145:50–56

    Article  CAS  PubMed  Google Scholar 

  • Song L, Ding W, Zhao M et al (2006) Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Sci 171(4):449–458

    Article  CAS  PubMed  Google Scholar 

  • Song WY, Park J, Mendoza-CĂłzatl DG et al (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107:21187–21192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto G, Alleva K, Amodeo G et al (2012) New insight into the evolution of aquaporins from flowering plants and vertebrates: orthologous identification and functional transfer is possible. Gene 503:165–176

    Article  CAS  PubMed  Google Scholar 

  • Srivastava M, Ma LQ, Singh N (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56:335–1342

    Article  CAS  Google Scholar 

  • Srivastava S, Mishra S, Tripathi RD et al (2007) Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 41:2930–2936

    Article  CAS  PubMed  Google Scholar 

  • Stoeva VN, Bineva T (2003) Oxidative changes and photosynthesis in oat plants grown in As-contaminated soil. Bulgarian J Plant Physiol 29:87–95

    Google Scholar 

  • Stoeva N, Berova M, Vassilev A et al (2005a) Effect of exogenous polyamine diethylenetriamine on oxidative changes and photosynthesis in As-treated maize plants (Zea mays L.). J Cent Eur Agric 6:367–374

    Google Scholar 

  • Stoeva N, Berova M, Zlatev Z (2005b) Effect of arsenic on some physiological parameters in bean plants. Biol Plant 49:293–296

    Article  CAS  Google Scholar 

  • StrzaƂka K, Kostecka-GugaƂa A, Latowski D (2003) Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russ J Plant Physiol 50:168–172

    Article  Google Scholar 

  • Sumi D, Taguchi K, Sun Y et al (2005) Monomethylarsonous acid inhibits endothelial nitric oxide synthase activity. J Health Sci 51:728–730

    Article  CAS  Google Scholar 

  • Sundaram S, Rathinasabapathi B, Ma LQ (2008) An arsenate-activated glutaredoxin from the arsenic hyperaccumulator fern Pteris vittata L. regulates intracellular arsenite. J Biol Chem 283:6095–6101

    Article  CAS  PubMed  Google Scholar 

  • Sung DY, Kim TH, Komives EA et al (2009) ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis. Plant J 59:802–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Miller G, Morales J et al (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  CAS  PubMed  Google Scholar 

  • Talukdar D (2013) Arsenic induced changes in growth and antioxidant metabolism of fenugreek. Russ J Plant Physiol 60:652–660

    Article  CAS  Google Scholar 

  • Talukdar D (2016) Exogenous thiourea modulates antioxidant defense and glyoxalase systems in lentil genotypes under arsenic stress. J Plant Stress Physiol 2:9–21

    Article  Google Scholar 

  • Talukdar D, Talukdar T (2014) Coordinated response of sulfate transport, cysteine biosynthesis, and glutathione-mediated antioxidant defense in lentil (Lens culinaris Medik.) genotypes exposed to arsenic. Protoplasma 251:839–855

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Mitsuhashi H, Kondo N et al (1982) Further evidence for inactivation of fructose-1,6-bisphosphate at arsenic induced oxidative stress in plants 453 the beginning of SO2 fumigation: increase in fructose-1,6-bisphosphate and decrease in fructose-6–phosphate in SO2 − fumigated spinach leaves. Plant Cell Physiol 23:1467–1470

    Article  CAS  Google Scholar 

  • Tang Z, Lv Y, Chen F et al (2016) Arsenic methylation in Arabidopsis thaliana expressing an algal arsenite methyltransferase gene increases arsenic phytotoxicity. J Agric Food Chem 64:674–2681

    Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H et al (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 939161:1–3

    Article  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91phox homologues Atrbohd and Atrbohf are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A 99:517–522

    Article  CAS  PubMed  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. https://doi.org/10.1016/j.biocel.2006.07.001

    Article  CAS  Google Scholar 

  • VranovĂĄ E, InzĂ© D, Van Berusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    Article  PubMed  Google Scholar 

  • Wang TS, Kuo CF, Jan KY et al (1996) Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species. J Cell Physiol 169:256–268

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhang H, Li XF et al (2007) Study of interactions between arsenicals and thioredoxins (human and E.coli) using mass spectrometry. Rapid Commun Mass Spectrom 21:3658–3666

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Mugume Y, Bassham DC (2017) New advances in autophagy in plants: regulation, selectivity and function. Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2017.07.018

    Article  CAS  Google Scholar 

  • Wink DA, Miranda KM, Espey MG et al (2001) Mechanisms of the antioxidant effects of nitric oxide. Antioxid Redox Signal 3:203–213

    Article  CAS  PubMed  Google Scholar 

  • Wojas S, Clemens S, Sklodowska A et al (2010) Arsenic response of AtPCS1- and CePCS-expressing plants – effects of external As(V) concentration on As accumulation pattern and NPT metabolism. J Plant Physiol 167:169–175

    Article  CAS  PubMed  Google Scholar 

  • Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **ang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell Online 10:1539–1550

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Yamanaka K, Hayashi H, Tachikawa M et al (1997) Metabolic methylation is a possible genotoxicity-enhancing process of inorganic arsenics. Mutat Res 394:95–101

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka K, Mizol M, Kato K et al (2001) Oral administration of dimethylarsinic acid, a main metabolite of inorganic arsenic, in mice promotes skin tumorigenesis initiated by dimethylbenz(a)anthracene with or without ultraviolet B as a promoter. Biol Pharm Bull 5:510–514

    Article  Google Scholar 

  • Yan Y, Tsuichihara N, Etoh T et al (2007) Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening. Plant Cell Environ 30:1320–1325

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8:505–512

    Article  CAS  PubMed  Google Scholar 

  • You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092. https://doi.org/10.3389/fpls.2015.01092

    Article  PubMed  PubMed Central  Google Scholar 

  • Young AJ, Britton G (1990) Carotenoids and oxidative stress. In: Baltscheffsky M (ed) Current research in photosynthesis. Springer, Stockholm, pp 3381–3384

    Chapter  Google Scholar 

  • Yu LJ, Luo YF, Liao B et al (2012) Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol 195:97–112

    Article  CAS  PubMed  Google Scholar 

  • Zamora PL, Rockenbauer A, Villamena FA (2014) Radical model of arsenic(III) toxicity: theoretical and EPR spin trap** studies. Chem Res Toxicol 27:765–774

    Article  CAS  PubMed  Google Scholar 

  • Zanella L, Fattorini L, Brunetti P (2016) Overexpression of AtPCS1 in tobacco increases arsenic and arsenic plus cadmium accumulation and detoxification. Planta 243:605–622

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Liu Y, Xue L et al (2006) An molecular cloning and characterization of a novel MAP kinase gene in Chorispora bungeana. Plant Physiol Biochem 44:78–84

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Wang JR, Barker JHA et al (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403–410

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA et al (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Chen S, Jia L et al (2012) Selectivity of arsenite interaction with zinc finger proteins. Metallomics 4:988–994

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Jiang D, Liu F, Dai T, Liu W, **g Q, Cao W (2009) Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ Exp Bot 67:222–227

    Article  CAS  Google Scholar 

  • Zhou X, Cooper KL, Sun X et al (2015) Selective sensitization of zinc finger protein oxidation by ROS through arsenic binding. J Biol Chem 290:18361–18369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kostecka-GugaƂa, A., Latowski, D. (2018). Arsenic-Induced Oxidative Stress in Plants. In: Hasanuzzaman, M., Nahar, K., Fujita, M. (eds) Mechanisms of Arsenic Toxicity and Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-1292-2_4

Download citation

Publish with us

Policies and ethics

Navigation