Cell Cycle Regulation in Treatment of Breast Cancer

  • Chapter
  • First Online:
Translational Research in Breast Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1026))

Abstract

Cell cycle progression and cell proliferation are under precise and orchestrated control in normal cells. However, uncontrolled cell proliferation caused by aberrant cell cycle progression is a crucial characteristic of cancer. Understanding cell cycle progression and its regulation sheds light on cancer treatment. Agents targeting cell cycle regulators (such as CDKs) have been considered as promising candidates in cancer treatment. Although the first-generation pan-CDK inhibitors failed in clinical trials because of their adverse events and low efficacy, new selective CDK 4/6 inhibitors showed potent efficacy with tolerable safety in preclinical and clinical studies. Here we will review the mechanisms of cell cycle regulation and targeting key cell cycle regulators (such as CDKs) in breast cancer treatment. Particularly, we will discuss the mechanism of CDK inhibitors in disrupting cell cycle progression, the use of selective CDK4/6 inhibitors in treatment of advanced, hormone receptor (HR)-positive postmenopausal breast cancer patients, and other clinical trials that aim to extend the utilization of these agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Nurse PM (2002) Cyclin dependent kinases and cell cycle control. Bioscience Rep 22(5-6):487–499. doi:10.1023/A:1022017701871

  2. Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30(11):630–641. doi:10.1016/j.tibs.2005.09.005

    Article  CAS  PubMed  Google Scholar 

  3. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153–166. doi:10.1038/nrc2602

    Article  CAS  PubMed  Google Scholar 

  4. Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432(7015):316–323. doi:10.1038/nature03097

    Article  CAS  PubMed  Google Scholar 

  5. Shapiro GI (2006) Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol 24(11):1770–1783. doi:10.1200/Jco.2005.03.7689

    Article  CAS  PubMed  Google Scholar 

  6. Beaver JA, Amiri-Kordestani L, Charlab R, Chen W, Palmby T, Tilley A, Zirkelbach JF, Yu J, Liu Q, Zhao L, Crich J, Chen XH, Hughes M, Bloomquist E, Tang S, Sridhara R, Kluetz PG, Kim G, Ibrahim A, Pazdur R, Cortazar P (2015) FDA approval: Palbociclib for the treatment of postmenopausal patients with estrogen receptor-positive, HER2-negative metastatic breast cancer. Clin Cancer Res 21(21):4760–4766. doi:10.1158/1078-0432.CCR-15-1185

    Article  CAS  PubMed  Google Scholar 

  7. Walker AJ, Wedam S, Amiri-Kordestani L, Bloomquist E, Tang S, Sridhara R, Chen W, Palmby TR, Fourie Zirkelbach J, Fu W, Liu Q, Tilley A, Kim G, Kluetz PG, McKee AE, Pazdur R (2016) FDA approval of Palbociclib in combination with Fulvestrant for the treatment of hormone receptor-positive, HER2-negative metastatic breast cancer. Clin Cancer Res 22(20):4968–4972. doi:10.1158/1078-0432.CCR-16-0493

    Article  CAS  PubMed  Google Scholar 

  8. Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM, Zhai H, Vidal M, Gygi SP, Braun P, Sicinski P (2011) A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 20(5):620–634. doi:10.1016/j.ccr.2011.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harbour JW, Dean DC (2000) The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14(19):2393–2409

    Article  CAS  PubMed  Google Scholar 

  10. Malumbres M, Barbacid M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1(3):222–231. doi:10.1038/35106065

    Article  CAS  PubMed  Google Scholar 

  11. Hwang HC, Clurman BE (2005) Cyclin E in normal and neoplastic cell cycles. Oncogene 24(17):2776–2786. doi:10.1038/sj.onc.1208613

    Article  CAS  PubMed  Google Scholar 

  12. Spencer SL, Cappell SD, Tsai FC, Overton KW, Wang CL, Meyer T (2013) The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 155(2):369–383. doi:10.1016/j.cell.2013.08.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ren S, Rollins BJ (2004) Cyclin C/cdk3 promotes Rb-dependent G0 exit. Cell 117(2):239–251

    Article  CAS  PubMed  Google Scholar 

  14. Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366(6456):704–707. doi:10.1038/366704a0

    Article  CAS  PubMed  Google Scholar 

  15. Hannon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 371(6494):257–261. doi:10.1038/371257a0

    Article  CAS  PubMed  Google Scholar 

  16. Chan FK, Zhang J, Cheng L, Shapiro DN, Winoto A (1995) Identification of human and mouse p19, a novel CDK4 and CDK6 inhibitor with homology to p16ink4. Mol Cell Biol 15(5):2682–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hirai H, Roussel MF, Kato JY, Ashmun RA, Sherr CJ (1995) Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol Cell Biol 15(5):2672–2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512

    Article  CAS  PubMed  Google Scholar 

  19. Pavletich NP (1999) Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol 287(5):821–828. doi:10.1006/jmbi.1999.2640

    Article  CAS  PubMed  Google Scholar 

  20. Serrano M, Blasco MA (2001) Putting the stress on senescence. Curr Opin Cell Biol 13(6):748–753

    Article  CAS  PubMed  Google Scholar 

  21. Reynisdottir I, Polyak K, Iavarone A, Massague J (1995) Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev 9(15):1831–1845

    Article  CAS  PubMed  Google Scholar 

  22. Witkiewicz AK, Knudsen KE, Dicker AP, Knudsen ES (2011) The meaning of p16(ink4a) expression in tumors: functional significance, clinical associations and future developments. Cell Cycle 10(15):2497–2503. doi:10.4161/cc.10.15.16776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. LaPak KM, Burd CE (2014) The molecular balancing act of p16(INK4a) in cancer and aging. Mol Cancer Res 12(2):167–183. doi:10.1158/1541-7786.MCR-13-0350

    Article  CAS  PubMed  Google Scholar 

  24. Lukas J, Parry D, Aagaard L, Mann DJ, Bartkova J, Strauss M, Peters G, Bartek J (1995) Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature 375(6531):503–506. doi:10.1038/375503a0

    Article  CAS  PubMed  Google Scholar 

  25. van den Heuvel S, Harlow E (1993) Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262(5142):2050–2054

    Article  PubMed  Google Scholar 

  26. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massague J (1994) Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78(1):59–66

    Article  CAS  PubMed  Google Scholar 

  27. Coqueret O (2003) New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13(2):65–70

    Article  CAS  PubMed  Google Scholar 

  28. LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A, Harlow E (1997) New functional activities for the p21 family of CDK inhibitors. Genes Dev 11(7):847–862

    Article  CAS  PubMed  Google Scholar 

  29. Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, Sherr CJ (1999) The p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 18(6):1571–1583. doi:10.1093/emboj/18.6.1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Frank CJ, Hyde M, Greider CW (2006) Regulation of telomere elongation by the cyclin-dependent kinase CDK1. Mol Cell 24(3):423–432. doi:10.1016/j.molcel.2006.10.020

    Article  CAS  PubMed  Google Scholar 

  31. Pagano M (2004) Control of DNA synthesis and mitosis by the Skp2-p27-Cdk1/2 axis. Mol Cell 14(4):414–416

    Article  CAS  PubMed  Google Scholar 

  32. Nigg EA (2001) Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2(1):21–32. doi:10.1038/35048096

    Article  CAS  PubMed  Google Scholar 

  33. Harper JW, Burton JL, Solomon MJ (2002) The anaphase-promoting complex: it’s not just for mitosis any more. Genes Dev 16(17):2179–2206. doi:10.1101/gad.1013102

    Article  CAS  PubMed  Google Scholar 

  34. Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, Shokat KM, Morgan DO (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425(6960):859–864. doi:10.1038/nature02062

    Article  CAS  PubMed  Google Scholar 

  35. Maestre C, Delgado-Esteban M, Gomez-Sanchez JC, Bolanos JP, Almeida A (2008) Cdk5 phosphorylates Cdh1 and modulates cyclin B1 stability in excitotoxicity. EMBO J 27(20):2736–2745. doi:10.1038/emboj.2008.195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang J, Cicero SA, Wang L, Romito-Digiacomo RR, Yang Y, Herrup K (2008) Nuclear localization of Cdk5 is a key determinant in the postmitotic state of neurons. Proc Natl Acad Sci U S A 105(25):8772–8777. doi:10.1073/pnas.0711355105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cruz JC, Tsai LH (2004) A Jekyll and Hyde kinase: roles for Cdk5 in brain development and disease. Curr Opin Neurobiol 14(3):390–394. doi:10.1016/j.conb.2004.05.002

    Article  CAS  PubMed  Google Scholar 

  38. Kesavapany S, Li BS, Amin N, Zheng YL, Grant P, Pant HC (2004) Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. Biochim Biophys Acta 1697(1–2):143–153. doi:10.1016/j.bbapap.2003.11.020

    Article  CAS  PubMed  Google Scholar 

  39. Fisher RP (2005) Secrets of a double agent: CDK7 in cell-cycle control and transcription. J Cell Sci 118(Pt 22):5171–5180. doi:10.1242/jcs.02718

    Article  CAS  PubMed  Google Scholar 

  40. Lolli G, Johnson LN (2005) CAK-Cyclin-dependent activating kinase: a key kinase in cell cycle control and a target for drugs? Cell Cycle 4(4):572–577

    Article  CAS  PubMed  Google Scholar 

  41. Morris EJ, Ji JY, Yang F, Di Stefano L, Herr A, Moon NS, Kwon EJ, Haigis KM, Naar AM, Dyson NJ (2008) E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature 455(7212):552–556. doi:10.1038/nature07310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Garriga J, Grana X (2004) Cellular control of gene expression by T-type cyclin/CDK9 complexes. Gene 337:15–23. doi:10.1016/j.gene.2004.05.007

    Article  CAS  PubMed  Google Scholar 

  43. Kasten M, Giordano A (2001) Cdk10, a Cdc2-related kinase, associates with the Ets2 transcription factor and modulates its transactivation activity. Oncogene 20(15):1832–1838. doi:10.1038/sj.onc.1204295

    Article  CAS  PubMed  Google Scholar 

  44. Loyer P, Trembley JH, Katona R, Kidd VJ, Lahti JM (2005) Role of CDK/cyclin complexes in transcription and RNA splicing. Cell Signal 17(9):1033–1051. doi:10.1016/j.cellsig.2005.02.005

    Article  CAS  PubMed  Google Scholar 

  45. Yokoyama H, Gruss OJ, Rybina S, Caudron M, Schelder M, Wilm M, Mattaj IW, Karsenti E (2008) Cdk11 is a RanGTP-dependent microtubule stabilization factor that regulates spindle assembly rate. J Cell Biol 180(5):867–875. doi:10.1083/jcb.200706189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hu D, Valentine M, Kidd VJ, Lahti JM (2007) CDK11(p58) is required for the maintenance of sister chromatid cohesion. J Cell Sci 120(Pt 14):2424–2434. doi:10.1242/jcs.007963

    Article  CAS  PubMed  Google Scholar 

  47. Wilker EW, van Vugt MA, Artim SA, Huang PH, Petersen CP, Reinhardt HC, Feng Y, Sharp PA, Sonenberg N, White FM, Yaffe MB (2007) 14-3-3sigma controls mitotic translation to facilitate cytokinesis. Nature 446(7133):329–332. doi:10.1038/nature05584

    Article  CAS  PubMed  Google Scholar 

  48. Petretti C, Savoian M, Montembault E, Glover DM, Prigent C, Giet R (2006) The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation. EMBO Rep 7(4):418–424. doi:10.1038/sj.embor.7400639

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES (2015) The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 14(2):130–146. doi:10.1038/nrd4504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Motokura T, Bloom T, Kim HG, Juppner H, Ruderman JV, Kronenberg HM, Arnold A (1991) A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature 350(6318):512–515. doi:10.1038/350512a0

    Article  CAS  PubMed  Google Scholar 

  51. Sutherland RL, Musgrove EA (2002) Cyclin D1 and mammary carcinoma: new insights from transgenic mouse models. Breast Cancer Res 4(1):14–17

    Article  CAS  PubMed  Google Scholar 

  52. Gillett C, Fantl V, Smith R, Fisher C, Bartek J, Dickson C, Barnes D, Peters G (1994) Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res 54(7):1812–1817

    CAS  PubMed  Google Scholar 

  53. Foster JS, Henley DC, Ahamed S, Wimalasena J (2001) Estrogens and cell-cycle regulation in breast cancer. Trends Endocrinol Metab 12(7):320–327

    Article  CAS  PubMed  Google Scholar 

  54. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL (2011) Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 11(8):558–572. doi:10.1038/nrc3090

    Article  CAS  PubMed  Google Scholar 

  55. Choi YJ, Anders L (2014) Signaling through cyclin D-dependent kinases. Oncogene 33(15):1890–1903. doi:10.1038/onc.2013.137

    Article  CAS  PubMed  Google Scholar 

  56. Herschkowitz JI, He X, Fan C, Perou CM (2008) The functional loss of the retinoblastoma tumour suppressor is a common event in basal-like and luminal B breast carcinomas. Breast Cancer Res 10(5):R75. doi:10.1186/bcr2142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Buckley MF, Sweeney KJ, Hamilton JA, Sini RL, Manning DL, Nicholson RI, deFazio A, Watts CK, Musgrove EA, Sutherland RL (1993) Expression and amplification of cyclin genes in human breast cancer. Oncogene 8(8):2127–2133

    CAS  PubMed  Google Scholar 

  58. Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV (1994) Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369(6482):669–671. doi:10.1038/369669a0

    Article  CAS  PubMed  Google Scholar 

  59. Weinstat-Saslow D, Merino MJ, Manrow RE, Lawrence JA, Bluth RF, Wittenbel KD, Simpson JF, Page DL, Steeg PS (1995) Overexpression of cyclin D mRNA distinguishes invasive and in situ breast carcinomas from non-malignant lesions. Nat Med 1(12):1257–1260

    Article  CAS  PubMed  Google Scholar 

  60. Alle KM, Henshall SM, Field AS, Sutherland RL (1998) Cyclin D1 protein is overexpressed in hyperplasia and intraductal carcinoma of the breast. Clin Cancer Res 4(4):847–854

    CAS  PubMed  Google Scholar 

  61. Musgrove EA, Lee CS, Buckley MF, Sutherland RL (1994) Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc Natl Acad Sci U S A 91(17):8022–8026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yu Q, Geng Y, Sicinski P (2001) Specific protection against breast cancers by cyclin D1 ablation. Nature 411(6841):1017–1021. doi:10.1038/35082500

    Article  CAS  PubMed  Google Scholar 

  63. Yang C, Ionescu-Tiba V, Burns K, Gadd M, Zukerberg L, Louis DN, Sgroi D, Schmidt EV (2004) The role of the cyclin D1-dependent kinases in ErbB2-mediated breast cancer. Am J Pathol 164(3):1031–1038. doi:10.1016/S0002-9440(10)63190-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Roy PG, Thompson AM (2006) Cyclin D1 and breast cancer. Breast 15(6):718–727. doi:10.1016/j.breast.2006.02.005

    Article  PubMed  Google Scholar 

  65. Neuman E, Ladha MH, Lin N, Upton TM, Miller SJ, DiRenzo J, Pestell RG, Hinds PW, Dowdy SF, Brown M, Ewen ME (1997) Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol Cell Biol 17(9):5338–5347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ (1997) CDK-independent activation of estrogen receptor by cyclin D1. Cell 88(3):405–415

    Article  CAS  PubMed  Google Scholar 

  67. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100(14):8418–8423. doi:10.1073/pnas.0932692100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nielsen NH, Arnerlov C, Emdin SO, Landberg G (1996) Cyclin E overexpression, a negative prognostic factor in breast cancer with strong correlation to oestrogen receptor status. Br J Cancer 74(6):874–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Donnellan R, Kleinschmidt I, Chetty R (2001) Cyclin E immunoexpression in breast ductal carcinoma: pathologic correlations and prognostic implications. Hum Pathol 32(1):89–94. doi:10.1053/hupa.2001.21141

    Article  CAS  PubMed  Google Scholar 

  70. Span PN, Tjan-Heijnen VC, Manders P, Beex LV, Sweep CG (2003) Cyclin-E is a strong predictor of endocrine therapy failure in human breast cancer. Oncogene 22(31):4898–4904. doi:10.1038/sj.onc.1206818

    Article  CAS  PubMed  Google Scholar 

  71. Keyomarsi K, Tucker SL, Buchholz TA, Callister M, Ding Y, Hortobagyi GN, Bedrosian I, Knickerbocker C, Toyofuku W, Lowe M, Herliczek TW, Bacus SS (2002) Cyclin E and survival in patients with breast cancer. N Engl J Med 347(20):1566–1575. doi:10.1056/NEJMoa021153

    Article  CAS  PubMed  Google Scholar 

  72. Scaltriti M, Eichhorn PJ, Cortes J, Prudkin L, Aura C, Jimenez J, Chandarlapaty S, Serra V, Prat A, Ibrahim YH, Guzman M, Gili M, Rodriguez O, Rodriguez S, Perez J, Green SR, Mai S, Rosen N, Hudis C, Baselga J (2011) Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients. Proc Natl Acad Sci U S A 108(9):3761–3766. doi:10.1073/pnas.1014835108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Smith ML, Seo YR (2000) Sensitivity of cyclin E-overexpressing cells to cisplatin/taxol combinations. Anticancer Res 20(4):2537–2539

    CAS  PubMed  Google Scholar 

  74. Sutherland RL, Musgrove EA (2004) Cyclins and breast cancer. J Mammary Gland Biol Neoplasia 9(1):95–104. doi:10.1023/B:JOMG.0000023591.45568.77

    Article  PubMed  Google Scholar 

  75. Barton MC, Akli S, Keyomarsi K (2006) Deregulation of cyclin E meets dysfunction in p53: closing the escape hatch on breast cancer. J Cell Physiol 209(3):686–694. doi:10.1002/jcp.20818

    Article  CAS  PubMed  Google Scholar 

  76. Luhtala S, Staff S, Tanner M, Isola J (2016) Cyclin E amplification, over-expression, and relapse-free survival in HER-2-positive primary breast cancer. Tumour Biol 37(7):9813–9823. doi:10.1007/s13277-016-4870-z

    Article  CAS  PubMed  Google Scholar 

  77. Gao S, Ma JJ, Lu C (2013) Prognostic value of cyclin E expression in breast cancer: a meta-analysis. Tumour Biol 34(6):3423–3430. doi:10.1007/s13277-013-0915-8

    Article  CAS  PubMed  Google Scholar 

  78. Hunt KK, Karakas C, Ha MJ, Biernacka A, Yi M, Sahin A, Adjapong O, Hortobogyi GN, Bondy ML, Thompson PA, Cheung KL, Ellis IO, Bacus S, Symmans WF, Do KA, Keyomarsi K (2016) Cytoplasmic Cyclin E predicts recurrence in patients with breast cancer. Clin Cancer Res. doi:10.1158/1078-0432.CCR-16-2217

  79. Timms JF, White SL, O’Hare MJ, Waterfield MD (2002) Effects of ErbB-2 overexpression on mitogenic signalling and cell cycle progression in human breast luminal epithelial cells. Oncogene 21(43):6573–6586. doi:10.1038/sj.onc.1205847

    Article  CAS  PubMed  Google Scholar 

  80. Mittendorf EA, Liu Y, Tucker SL, McKenzie T, Qiao N, Akli S, Biernacka A, Meijer L, Keyomarsi K, Hunt KK (2010) A novel interaction between HER2/neu and cyclin E in breast cancer. Oncogene 29(27):3896–3907. doi:10.1038/onc.2010.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Akli S, Zheng PJ, Multani AS, Wingate HF, Pathak S, Zhang N, Tucker SL, Chang S, Keyomarsi K (2004) Tumor-specific low molecular weight forms of cyclin E induce genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. Cancer Res 64(9):3198–3208

    Article  CAS  PubMed  Google Scholar 

  82. Akli S, Van Pelt CS, Bui T, Meijer L, Keyomarsi K (2011) Cdk2 is required for breast cancer mediated by the low-molecular-weight isoform of cyclin E. Cancer Res 71(9):3377–3386. doi:10.1158/0008-5472.CAN-10-4086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Robinson WA, Elefanty AG, Hersey P (1996) Expression of the tumour suppressor genes p15 and p16 in malignant melanoma. Melanoma Res 6(4):285–289

    Article  CAS  PubMed  Google Scholar 

  84. Van Zee KJ, Calvano JE, Bisogna M (1998) Hypomethylation and increased gene expression of p16INK4a in primary and metastatic breast carcinoma as compared to normal breast tissue. Oncogene 16(21):2723–2727. doi:10.1038/sj.onc.1201794

    Article  PubMed  Google Scholar 

  85. Wong SC, Chan JK, Lee KC, Hsiao WL (2001) Differential expression of p16/p21/p27 and cyclin D1/D3, and their relationships to cell proliferation, apoptosis, and tumour progression in invasive ductal carcinoma of the breast. J Pathol 194(1):35–42. doi:10.1002/path.838

    Article  CAS  PubMed  Google Scholar 

  86. Bisogna M, Calvano JE, Ho GH, Orlow I, Cordon-Cardo C, Borgen PI, Van Zee KJ (2001) Molecular analysis of the INK4A and INK4B gene loci in human breast cancer cell lines and primary carcinomas. Cancer Genet Cytogenet 125(2):131–138

    Article  CAS  PubMed  Google Scholar 

  87. Zariwala M, Liu E, **ong Y (1996) Mutational analysis of the p16 family cyclin-dependent kinase inhibitors p15INK4b and p18INK4c in tumor-derived cell lines and primary tumors. Oncogene 12(2):451–455

    CAS  PubMed  Google Scholar 

  88. Herman JG, Jen J, Merlo A, Baylin SB (1996) Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res 56(4):722–727

    CAS  PubMed  Google Scholar 

  89. Gartel AL, Radhakrishnan SK (2005) Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res 65(10):3980–3985. doi:10.1158/0008-5472.CAN-04-3995

    Article  CAS  PubMed  Google Scholar 

  90. Walsh A, Cook RS, Rexer B, Arteaga CL, Skala MC (2012) Optical imaging of metabolism in HER2 overexpressing breast cancer cells. Biomed Opt Express 3(1):75–85. doi:10.1364/BOE.3.000075

    Article  CAS  PubMed  Google Scholar 

  91. Musgrove EA, Davison EA, Ormandy CJ (2004) Role of the CDK inhibitor p27 (Kip1) in mammary development and carcinogenesis: insights from knockout mice. J Mammary Gland Biol Neoplasia 9(1):55–66. doi:10.1023/B:JOMG.0000023588.55733.84

    Article  PubMed  Google Scholar 

  92. Katayose Y, Kim M, Rakkar AN, Li Z, Cowan KH, Seth P (1997) Promoting apoptosis: a novel activity associated with the cyclin-dependent kinase inhibitor p27. Cancer Res 57(24):5441–5445

    CAS  PubMed  Google Scholar 

  93. Lapenna S, Giordano A (2009) Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov 8(7):547–566. doi:10.1038/nrd2907

    Article  CAS  PubMed  Google Scholar 

  94. Bose P, Simmons GL, Grant S (2013) Cyclin-dependent kinase inhibitor therapy for hematologic malignancies. Expert Opin Investig Drugs 22(6):723–738. doi:10.1517/13543784.2013.789859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lin TS, Blum KA, Fischer DB, Mitchell SM, Ruppert AS, Porcu P, Kraut EH, Baiocchi RA, Moran ME, Johnson AJ, Schaaf LJ, Grever MR, Byrd JC (2010) Flavopiridol, fludarabine, and rituximab in mantle cell lymphoma and indolent B-cell lymphoproliferative disorders. J Clin Oncol 28(3):418–423. doi:10.1200/JCO.2009.24.1570

    Article  CAS  PubMed  Google Scholar 

  96. Ramaswamy B, Phelps MA, Baiocchi R, Bekaii-Saab T, Ni W, Lai JP, Wolfson A, Lustberg ME, Wei L, Wilkins D, Campbell A, Arbogast D, Doyle A, Byrd JC, Grever MR, Shah MH (2012) A dose-finding, pharmacokinetic and pharmacodynamic study of a novel schedule of flavopiridol in patients with advanced solid tumors. Investig New Drugs 30(2):629–638. doi:10.1007/s10637-010-9563-7

    Article  CAS  Google Scholar 

  97. Hegeman RB, Mulkerin D, Thomas J, Alberti D, Binger K, Marnocha R, Kolesar J, Wilding G (2005) Phase I study of oxaliplatin in combination with 5-fluorouracil (5-FU), leucovorin (LV) and capecitabine (ORAL FOLFOX-6) in patients with advanced or metastatic solid tumors. J Clin Oncol 23(16):149s–149s

    Google Scholar 

  98. Le Tourneau C, Faivre S, Laurence V, Delbaldo C, Vera K, Girre V, Chiao J, Armour S, Frame S, Green SR, Gianella-Borradori A, Dieras V, Raymond E (2010) Phase I evaluation of seliciclib (R-roscovitine), a novel oral cyclin-dependent kinase inhibitor, in patients with advanced malignancies. Eur J Cancer 46(18):3243–3250. doi:10.1016/j.ejca.2010.08.001

    Article  PubMed  CAS  Google Scholar 

  99. Nair BC, Vallabhaneni S, Tekmal RR, Vadlamudi RK (2011) Roscovitine confers tumor suppressive effect on therapy-resistant breast tumor cells. Breast Cancer Res 13(3):R80. doi:10.1186/bcr2929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Appleyard MV, O’Neill MA, Murray KE, Paulin FE, Bray SE, Kernohan NM, Levison DA, Lane DP, Thompson AM (2009) Seliciclib (CYC202, R-roscovitine) enhances the antitumor effect of doxorubicin in vivo in a breast cancer xenograft model. Int J Cancer 124(2):465–472. doi:10.1002/ijc.23938

    Article  CAS  PubMed  Google Scholar 

  101. Kodym E, Kodym R, Reis AE, Habib AA, Story MD, Saha D (2009) The small-molecule CDK inhibitor, SNS-032, enhances cellular radiosensitivity in quiescent and hypoxic non-small cell lung cancer cells. Lung Cancer 66(1):37–47. doi:10.1016/j.lungcan.2008.12.026

    Article  PubMed  Google Scholar 

  102. Walsby E, Lazenby M, Pepper C, Burnett AK (2011) The cyclin-dependent kinase inhibitor SNS-032 has single agent activity in AML cells and is highly synergistic with cytarabine. Leukemia 25(3):411–419. doi:10.1038/leu.2010.290

    Article  CAS  PubMed  Google Scholar 

  103. Tong WG, Chen R, Plunkett W, Siegel D, Sinha R, Harvey RD, Badros AZ, Popplewell L, Coutre S, Fox JA, Mahadocon K, Chen T, Kegley P, Hoch U, Wierda WG (2010) Phase I and pharmacologic study of SNS-032, a potent and selective Cdk2, 7, and 9 inhibitor, in patients with advanced chronic lymphocytic leukemia and multiple myeloma. J Clin Oncol 28(18):3015–3022. doi:10.1200/JCO.2009.26.1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Heath EI, Bible K, Martell RE, Adelman DC, Lorusso PM (2008) A phase 1 study of SNS-032 (formerly BMS-387032), a potent inhibitor of cyclin-dependent kinases 2, 7 and 9 administered as a single oral dose and weekly infusion in patients with metastatic refractory solid tumors. Investig New Drugs 26(1):59–65. doi:10.1007/s10637-007-9090-3

    Article  CAS  Google Scholar 

  105. Kumar SK, LaPlant B, Chng WJ, Zonder J, Callander N, Fonseca R, Fruth B, Roy V, Erlichman C, Stewart AK (2015) Dinaciclib, a novel CDK inhibitor, demonstrates encouraging single-agent activity in patients with relapsed multiple myeloma. Blood 125(3):443–448. doi:10.1182/blood-2014-05-573741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Flynn J, Jones J, Johnson AJ, Andritsos L, Maddocks K, Jaglowski S, Hessler J, Grever MR, Im E, Zhou H, Zhu Y, Zhang D, Small K, Bannerji R, Byrd JC (2015) Dinaciclib is a novel cyclin-dependent kinase inhibitor with significant clinical activity in relapsed and refractory chronic lymphocytic leukemia. Leukemia 29(7):1524–1529. doi:10.1038/leu.2015.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nemunaitis JJ, Small KA, Kirschmeier P, Zhang D, Zhu Y, Jou YM, Statkevich P, Yao SL, Bannerji R (2013) A first-in-human, phase 1, dose-escalation study of dinaciclib, a novel cyclin-dependent kinase inhibitor, administered weekly in subjects with advanced malignancies. J Transl Med 11:259. doi:10.1186/1479-5876-11-259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Mitri Z, Karakas C, Wei C, Briones B, Simmons H, Ibrahim N, Alvarez R, Murray JL, Keyomarsi K, Moulder S (2015) A phase 1 study with dose expansion of the CDK inhibitor dinaciclib (SCH 727965) in combination with epirubicin in patients with metastatic triple negative breast cancer. Investig New Drugs 33(4):890–894. doi:10.1007/s10637-015-0244-4

    Article  CAS  Google Scholar 

  109. Mita MM, Joy AA, Mita A, Sankhala K, Jou YM, Zhang D, Statkevich P, Zhu Y, Yao SL, Small K, Bannerji R, Shapiro CL (2014) Randomized phase II trial of the cyclin-dependent kinase inhibitor dinaciclib (MK-7965) versus capecitabine in patients with advanced breast cancer. Clin Breast Cancer 14(3):169–176. doi:10.1016/j.clbc.2013.10.016

    Article  CAS  PubMed  Google Scholar 

  110. O’Leary B, Finn RS, Turner NC (2016) Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol 13(7):417–430. doi:10.1038/nrclinonc.2016.26

    Article  PubMed  CAS  Google Scholar 

  111. Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, Albassam M, Zheng X, Leopold WR, Pryer NK, Toogood PL (2004) Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3(11):1427–1438

    CAS  PubMed  Google Scholar 

  112. Rivadeneira DB, Mayhew CN, Thangavel C, Sotillo E, Reed CA, Grana X, Knudsen ES (2010) Proliferative suppression by CDK4/6 inhibition: complex function of the retinoblastoma pathway in liver tissue and hepatoma cells. Gastroenterology 138(5):1920–1930. doi:10.1053/j.gastro.2010.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Flaherty KT, Lorusso PM, Demichele A, Abramson VG, Courtney R, Randolph SS, Shaik MN, Wilner KD, O’Dwyer PJ, Schwartz GK (2012) Phase I, dose-escalation trial of the oral cyclin-dependent kinase 4/6 inhibitor PD 0332991, administered using a 21-day schedule in patients with advanced cancer. Clin Cancer Res 18(2):568–576. doi:10.1158/1078-0432.CCR-11-0509

    Article  CAS  PubMed  Google Scholar 

  114. Schwartz GK, LoRusso PM, Dickson MA, Randolph SS, Shaik MN, Wilner KD, Courtney R, O’Dwyer PJ (2011) Phase I study of PD 0332991, a cyclin-dependent kinase inhibitor, administered in 3-week cycles (schedule 2/1). Br J Cancer 104(12):1862–1868. doi:10.1038/bjc.2011.177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. DeMichele A, Clark AS, Tan KS, Heitjan DF, Gramlich K, Gallagher M, Lal P, Feldman M, Zhang P, Colameco C, Lewis D, Langer M, Goodman N, Domchek S, Gogineni K, Rosen M, Fox K, O’Dwyer P (2015) CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment. Clin Cancer Res 21(5):995–1001. doi:10.1158/1078-0432.CCR-14-2258

    Article  CAS  PubMed  Google Scholar 

  116. Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, Ettl J, Patel R, Pinter T, Schmidt M, Shparyk Y, Thummala AR, Voytko NL, Fowst C, Huang X, Kim ST, Randolph S, Slamon DJ (2015) The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol 16(1):25–35. doi:10.1016/S1470-2045(14)71159-3

    Article  CAS  PubMed  Google Scholar 

  117. Finn RS, Hurvitz SA, Allison MA, Applebaum S, Glaspy J, DiCarlo B, Courtney R, Shaik N, Kim ST, Fowst C, Slamon DJ (2009) Phase I study of PD 0332991, a novel, oral, Cyclin-D kinase (CDK) 4/6 inhibitor in combination with Letrozole, for first-line treatment of metastatic post-menopausal, estrogen receptor-positive (ER plus ), human epidermal growth factor receptor 2 (HER2)-negative breast cancer. Cancer Res 69(24):788s–788s

    Google Scholar 

  118. Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, Harbeck N, Lipatov ON, Walshe JM, Moulder S, Gauthier E, Lu DR, Randolph S, Dieras V, Slamon DJ (2016) Palbociclib and Letrozole in advanced breast cancer. N Engl J Med 375(20):1925–1936. doi:10.1056/NEJMoa1607303

    Article  CAS  PubMed  Google Scholar 

  119. Cristofanilli M, Turner NC, Bondarenko I (2016) Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial (vol 17, pg 431, 2016). Lancet Oncol 17(7):E270–E270

    Google Scholar 

  120. Turner NC, Huang Bartlett C, Cristofanilli M (2015) Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med 373(17):1672–1673. doi:10.1056/NEJMc1510345

    Article  PubMed  Google Scholar 

  121. Murphy CG, Dickler MN (2015) The role of CDK4/6 inhibition in breast cancer. Oncologist 20(5):483–490. doi:10.1634/theoncologist.2014-0443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, Ginther C, Atefi M, Chen I, Fowst C, Los G, Slamon DJ (2009) PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res 11(5):R77. doi:10.1186/bcr2419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Witkiewicz AK, Cox D, Knudsen ES (2014) CDK4/6 inhibition provides a potent adjunct to Her2-targeted therapies in preclinical breast cancer models. Genes Cancer 5(7-8):261–272. doi:10.18632/genesandcancer.24

  124. Rader J, Russell MR, Hart LS, Nakazawa MS, Belcastro LT, Martinez D, Li Y, Carpenter EL, Attiyeh EF, Diskin SJ, Kim S, Parasuraman S, Caponigro G, Schnepp RW, Wood AC, Pawel B, Cole KA, Maris JM (2013) Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clin Cancer Res 19(22):6173–6182. doi:10.1158/1078-0432.CCR-13-1675

    Article  CAS  PubMed  Google Scholar 

  125. O’Brien NA, Tomaso ED, Ayala R, Tong L, Issakhanian S, Linnartz R, Finn RS, Hirawat S, Slamon DJ (2014) In vivo efficacy of combined targeting of CDK4/6, ER and PI3K signaling in ER plus breast cancer. Cancer Res 74(19). doi:10.1158/1538-7445.AM2014-4756

  126. Infante JR, Cassier PA, Gerecitano JF, Witteveen PO, Chugh R, Ribrag V, Chakraborty A, Matano A, Dobson JR, Crystal AS, Parasuraman S, Shapiro GI (2016) A phase I study of the Cyclin-dependent kinase 4/6 inhibitor Ribociclib (LEE011) in patients with advanced solid tumors and lymphomas. Clin Cancer Res 22(23):5696–5705. doi:10.1158/1078-0432.CCR-16-1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Juric DMP, Campone M et al (2016) Ribociclib (LEE011) and letrozole in estrogen receptor-positive (ER+), HER2-negative (HER2–) advanced breast cancer (aBC): phase Ib safety, preliminary efficacy and molecular analysis. Presented at the 2016 annual meeting of the American Society of Clinical Oncology, Chicago

    Google Scholar 

  128. Vora SR, Juric D, Kim N, Mino-Kenudson M, Huynh T, Costa C, Lockerman EL, Pollack SF, Liu M, Li X, Lehar J, Wiesmann M, Wartmann M, Chen Y, Cao ZA, Pinzon-Ortiz M, Kim S, Schlegel R, Huang A, Engelman JA (2014) CDK 4/6 inhibitors sensitize PIK3CA mutant breast cancer to PI3K inhibitors. Cancer Cell 26(1):136–149. doi:10.1016/j.ccr.2014.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Juric D, Ismail-Khan R, Campone M, Garcia-Estevez L, Becerra C, De Boer R, Hamilton E, Mayer IA, Hui R, Lathrop KI, Pagani O, Asano S, Bhansali SG, Zhang V, Hewes B, Munster P (2016) Phase Ib/Il study of ribociclib and alpelisib and letrozole in ER+, HER2-breast cancer: safety, preliminary efficacy and molecular analysis. Cancer Res 76. doi:10.1158/1538-7445.SABCS15-P3-14-01

  130. Curigliano G, Gomez Pardo P, Meric-Bernstam F, Conte P, Lolkema MP, Beck JT, Bardia A, Martinez Garcia M, Penault-Llorca F, Dhuria S, Tang Z, Solovieff N, Miller M, Di Tomaso E, Hurvitz SA (2016) Ribociclib plus letrozole in early breast cancer: a presurgical, window-of-opportunity study. Breast 28:191–198. doi:10.1016/j.breast.2016.06.008

    Article  CAS  PubMed  Google Scholar 

  131. Gelbert LM, Cai S, Lin X, Sanchez-Martinez C, Del Prado M, Lallena MJ, Torres R, Ajamie RT, Wishart GN, Flack RS, Neubauer BL, Young J, Chan EM, Iversen P, Cronier D, Kreklau E, de Dios A (2014) Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Investig New Drugs 32(5):825–837. doi:10.1007/s10637-014-0120-7

    Article  CAS  Google Scholar 

  132. Tate SC, Cai S, Ajamie RT, Burke T, Beckmann RP, Chan EM, De Dios A, Wishart GN, Gelbert LM, Cronier DM (2014) Semi-mechanistic pharmacokinetic/pharmacodynamic modeling of the antitumor activity of LY2835219, a new cyclin-dependent kinase 4/6 inhibitor, in mice bearing human tumor xenografts. Clin Cancer Res 20(14):3763–3774. doi:10.1158/1078-0432.CCR-13-2846

    Article  CAS  PubMed  Google Scholar 

  133. Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L, Papadopoulos KP, Beeram M, Rasco DW, Hilton JF, Nasir A, Beckmann RP, Schade AE, Fulford AD, Nguyen TS, Martinez R, Kulanthaivel P, Li LQ, Frenzel M, Cronier DM, Chan EM, Flaherty KT, Wen PY, Shapiro GI (2016) Efficacy and safety of Abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov 6(7):740–753. doi:10.1158/2159-8290.CD-16-0095

    Article  CAS  PubMed  Google Scholar 

  134. Goetz MP, Beeram M, Beck T, Conlin AK, Dees EC, Dickler MN, Helsten TL, Conkling PR, Edenfield WJ, Richards DA, Turner PK, Cai N, Chan EM, Pant S, Becerra CH, Kalinsky K, Puhalla SL, Rexer BN, Burris HA, Tolaney SM (2016) Abemaciclib, an inhibitor of CDK4 and CDK6, combined with endocrine and HER2-targeted therapies for women with metastatic breast cancer. Cancer Res 76. doi:10.1158/1538-7445.SABCS15-P4-13-25

  135. Dickler MN TS, Rugo HS et al (2016) MONARCH1: results from a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as monotherapy, in patients with HR+/HER2- breast cancer, after chemotherapy for advanced disease. J Clin Oncol 34(Suppl, abstr 510)

    Google Scholar 

  136. Raub TJ, Wishart GN, Kulanthaivel P, Staton BA, Ajamie RT, Sawada GA, Gelbert LM, Shannon HE, Sanchez-Martinez C, De Dios A (2015) Brain exposure of two selective dual CDK4 and CDK6 inhibitors and the antitumor activity of CDK4 and CDK6 inhibition in combination with Temozolomide in an intracranial glioblastoma Xenograft. Drug Metab Dispos 43(9):1360–1371. doi:10.1124/dmd.114.062745

    Article  CAS  PubMed  Google Scholar 

  137. Hurvitz S MM, Fernández Abad M, Chan D, Rostorfer R, Petru E, Barriga S, Costigan TM, Caldwell CW, Nguyen T, Press M, Slamon D (2016) Biological effects of abemaciclib in a phase 2 neoadjuvant study for postmenopausal patients with HR+, HER2- breast cancer. Presented at the 2016 San Antonio breast cancer symposium

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cai, Z., Liu, Q. (2017). Cell Cycle Regulation in Treatment of Breast Cancer. In: Song, E., Hu, H. (eds) Translational Research in Breast Cancer. Advances in Experimental Medicine and Biology, vol 1026. Springer, Singapore. https://doi.org/10.1007/978-981-10-6020-5_12

Download citation

Publish with us

Policies and ethics

Navigation