Wastewater Treatment Using Phototrophic–Heterotrophic Biofilms and Microbial Mats

  • Chapter
  • First Online:
Prospects and Challenges in Algal Biotechnology

Abstract

Phototrophic and photoheterotrophic microbial biofilms and mats are characterized by its abundant microbial diversity and unique properties in consortia functional populations. Recently, the roles of phototrophic microbial biofilms and mats involving microalgae (diatoms, green algae and cyanobacteria, and other members of bacteria, fungi, and protozoa’s) are receiving special attention because of their promissory first results obtained in the sustainable bioremediation of environment-sensitive habitats and effluents. The bioremediation of urban wastewater in coastal-marine environments, petroleum hydrocarbons and heavy metals and metalloid toxicity is a reality. Microbial biofilms and mats also play important bioremediation roles of aquaculture effluents, in the case of Penaeidae shrimp aquaculture effluents, figures of 80–97% removal efficiencies of nitrogen and phosphorous have been reported. Reported figures on the treatment of petroleum compounds achieved removal efficiencies of 25–85%. The uniqueness of many of these properties and processes for phototrophic and heterotrophies microbial biofilms and mats have led to innovative strategies benefiting biofilm-based bioremediation and environmentally safe bioprocesses, such as microbial consortia interactions, quorum sensing, gene exchange and uses of omics technologies. The application in the deep-sea tracking associated to petroleum extraction from shale rock, and in desalination of high salt seawater effluents are technologies based on biofilms and mats already in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad J, Fathurrahman L, Hajar A, Siti H (2013) Batch phytoremediation of aquaculture wastewater of silver barramundi utilizing green microalgae Chlorella sp. J Fish Aquat Sci 8:516–525

    Article  CAS  Google Scholar 

  • Ballester ELCA, Wasielesky Jr W, Cavalli RO, Abreu PC (2007) Nursery of the pink shrimp Farfantepenaeus paulensis in cages with artificialsubstrates:Biofilm composition and shrimp performance. Aquaculture 269(2007):355–362

    Google Scholar 

  • Bender J, Phillips P (2004) Microbial mats for multiple applications in aquaculture and bioremediation. Bioresour Technol 94:229–238

    Article  CAS  PubMed  Google Scholar 

  • Boivin M, Greve GD, Garcia-Meza JV, Massieux B, Sprenger W, Kraak MHS, Breurea AM, Rutgers M, Admiraal W (2007) Algae-bacterial interactions in metal contaminated flood plain sediments. Environ Pollut 145:884–894

    Google Scholar 

  • Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26(9)

    Google Scholar 

  • Buhmann M, Kroth PG, Schleheck D (2012) Photoautotrophic-heterotrophic biofilm communities: a laboratory incubator designed for growing axenic diatoms and bacteria in defined mixed-species biofilms. Env Microbiol Rep 4(1):133–140

    Article  Google Scholar 

  • Butler A (1998) Acquisition and utilization of transition metal ions by marine organisms. Science 281:207–10

    Google Scholar 

  • Cooksey KE (1992) Bacterial and Algal interactions in biofilms. In: Melo LF et al (eds) Biofilms-Science and technology. Kluwer Academic Press

    Google Scholar 

  • Crab R, Defoirdta T, Bossier P, Verstraete W (2012) BioHoc technology in aquaculture: beneficialeffects and future challenges. Aquaculture 356–357:351–356

    Article  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. http://doi.org/10.1038/nature04056

  • Croft MT, Warren M, Smith A (2006) Algae need their vitamins. Eukaryot Cell 5:1175–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Oteyza TG, Grimalt JO, Llir6 s M, Esteve I (2006) Microcosm experiments of oil degradation by microbial mats.Sci TotalEnviron 357:12–24

    Google Scholar 

  • Franco RA, Paniagua Michel J, Zamora Castro JE (2006) Characterization and performance of constructed nitrifying biofilms during nitrogen bioremediation of a wastewater effluent. J Ind Microbiol Biotechnol 34:279–287

    Article  Google Scholar 

  • Gimenez Casalduero F (2000) Integrated systems: “Environmentally clean” aquaculture. In: Proceedings of the seminar of the CIHEAM network on technology of aquaculture in the mediterranean (TECAM), 17–21

    Google Scholar 

  • Ginn B, Fein J (2008) The effect of species diversity on metal adsorption onto bacteria. Geochim Cosmochim Acta 72:3939–3948

    Article  CAS  Google Scholar 

  • Greene B, Bedell GW (1990) Algal gels or immobilized algae for metal recovery. In: Akatsuka I (ed) lntrodution to applied phycology. SPB Academic Publishing by, The Hague, the Netherlands, pp 137–49

    Google Scholar 

  • Horemans B, Albers P, Springaei D (2015) The biofilm concept from a bioremediation perspective. In Gavin Lear (ed): Biofilms in bioremediation: current research and emerging technologies. The University of Auckland, New Zealand. Caister Academic Press, p 252

    Google Scholar 

  • Kalin M, Wheeler WN, Meinrath G (2004) The removal of uranium from mining wastewater using algalfmicrobial biomass. J Env Radioact 78:151–177

    Article  Google Scholar 

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Jo Dewulf F, Malcata X, Herman van Langenhove G (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380

    Google Scholar 

  • Lea-Smith DJ, Biller SJ, Davey MP, Cotton CHAR, Perez Sepulveda BM, Turchyn AB, Scanland DJ, Smith AG, Chisholmb SW, and Howe CHJ (2015) Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. PNAS, 112:13595–13596

    Google Scholar 

  • Lezama Cervantes C, Paniagua Michel JJ (2010) Effects of constructed microbial mats on water quality and performance of Litopenaeus vannamei post-larvae. Aquac Eng 42(2):75–81

    Google Scholar 

  • Lezama Cervantes C, Paniagua Michel JJ, Zamora Castro JE (2010) Biorremediation of the shrimp Litopenaeus vannamei (Boone, 1931) culture effluents using constructed microbial mats in a recirculating system. Lat Am J Aquatic Res 38:129–142

    Google Scholar 

  • Loutseti S, Danilidis D, Amillia E, Katsaros A, Santos R (2009) The application of microalgaefbacterial biofilter for the detoxication of copper and cadmium. Biores Technol 100:2099–2105

    Google Scholar 

  • Mitra S, Sana B, Mukherjee J (2014) Biofilm and microbial mats bioprocesses in bioremediation ecological roles and biotechnological applications of marine and intertidal microbial biofilms. Adv Biochem Eng Biotechnol

    Google Scholar 

  • Moriarty DJW (1997) The role of microorganisms in aquaculture ponds. Aquaculture 151:333–349

    Google Scholar 

  • Moss KRK, Moss SM (2004) Effects of artificial substrate and stocking density on the nursery production of Pacific white shrimp Litopenaeus vannamei. J World Aquac Soc 35:536–542

    Google Scholar 

  • Mulbry W, Kondrad S, Pizarro C, Kebede-Westhead Elizabeth (2008) Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algalturf scrubbers. Bioresour Technol 99:8137–8142

    Article  CAS  PubMed  Google Scholar 

  • Munoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Article  CAS  PubMed  Google Scholar 

  • Nisbet EG, Fowler CM (1999) R. Proc.R. Soc Lend B 266:2375–2382

    Google Scholar 

  • Nunes AJP, Gesteira TCV, Goddard S (1997) Food ingestion and assimilation by the Southern brown shrimp Penaeus subtilis under semi-intensive culture in NE Brazil. Aquaculture 149:121–136

    Google Scholar 

  • Oswald WJ, Gotaas HB, Ludwig HF, Lynch V (1953) Algae symbiosis in oxidation ponds: photosynthetic oxygenation. Sew Ind Wastes 25:692–705

    Google Scholar 

  • Paniagua Michel J, Garcia 0 (2003) Ex-situ bioremediation of shrimp culture effluent using constructed microbialmats. Aquac Eng 28:131–139

    Google Scholar 

  • Paniagua Michel J, Rosales Morales A (2015) Marine bioremediation—a sustainable biotechnology of petroleum hydrocarbons biodegradation in coastaland marine environments. J Bioremediation Biodegrad 6:1–6

    Google Scholar 

  • Paniagua Michel J, Franco RA, Cantera JL, Stein LY (2005) Activity of nitrifying biofilms constructed in low-density polyester enhances bioremediation of a coastal wastewater effluent. World J Microbiol Biotechnol 21:1371–1377

    Article  CAS  Google Scholar 

  • Pazos M, Ferreira L, Rosales E, Sanroman MA (2016) Biofilm-mediated degradation of PAHs and pesticides. Chapter 10. Hydrocarbonoclastic Biofilms. In: Lear G (ed.) Biofilms in bioremediation: current research and emerging technologies. Caister Academic Press. The University of Auckland, New Zealand

    Google Scholar 

  • Radwan SS, AI-Hasan RH, Salamah S, AI-Dabbous S (2002) Bioremediation of oily sea water by bacteria immobilized in biofilms coating macroalgae. lnt Biodeterior Biodegrad 50:55–9

    Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Roeselers MC, van Loosdrecht M, Muyzer G (2008) Phototrophic biofilms and their potential applications. J Appl Phycol 20:227–235

    Article  CAS  PubMed  Google Scholar 

  • Rosales Morales A, Paniagua Michel J (2014) Bioremediation of hexadecane and dieseloil is enhanced by photosynthetically produced marine bBiosurfactants. J Bioremediation and Biodegrad 34:1–5

    Google Scholar 

  • Safonova ET, Dmitrieva IA, Kvitko KV (1999) The interaction of algae with alcanotrophic bacteria in black oil decomposition. Resour Conserv Recycl 27(1–2):193–201

    Google Scholar 

  • Safonova E, Kvitko KV, Lankevitch Ml, Surgko LF, Afri lA, Reisser W (2004) Biotreatment of industrialwaste-water by selected algal-bacterial consortia. Eng Life Sci 4:347–53

    Google Scholar 

  • Sanchez 0, Ferrera I, Vigues N, de Oteyza TG, Grimalt J, Mas J (2006) Int Biodeterior Biodegrad 58:186–195

    Google Scholar 

  • Sharma NK, Tiwari SP, Tripathi K, Rai AK (2011) Sustainability and cyanobacteria (blue-green algae): facts and challenges. J Appl Phycol 23:1059–1081

    Article  CAS  Google Scholar 

  • Stal LJ, Van Gemerden H, Krumbein WE (1985) Structure and development of a benthic marine microbialmat. FEMS Microbial Ecol 31:111–125

    Google Scholar 

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: biotechnologicalpotential. Biotechnol Adv 29:896–907

    Article  CAS  PubMed  Google Scholar 

  • Thompson FL, Abreu PC, Wasielesky W (2002) Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture 203:263–278

    Article  Google Scholar 

  • Ward OP (2004) The industrial sustainability of bioremediation processes. J lnd Microbial Biotechnol 31:1–4

    Google Scholar 

  • Wu Y, Hu Z, Yang L, Graham B, Kerr PG (2011) The removal of nutrients from non-point source wastewater by a hybrid bioreactor. Bioresour Technol 102:2419–2426

    Article  CAS  PubMed  Google Scholar 

  • Zamora CJ, Paniagua Michel J, Lezama Cervantes C (2007) A novel approach for bioremediation of a coastal marine wastewater effluent based on artificial microbial mats. Marine Biotechnol 10:181–189

    Article  Google Scholar 

  • Zhou J, Thompson DK, Xu Y, Tiedje JM (2004) Microbial functional genomics. Wiley, Hoboken, NJ, p 590

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Paniagua-Michel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paniagua-Michel, J. (2017). Wastewater Treatment Using Phototrophic–Heterotrophic Biofilms and Microbial Mats. In: Tripathi, B., Kumar, D. (eds) Prospects and Challenges in Algal Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1950-0_9

Download citation

Publish with us

Policies and ethics

Navigation